地球物理学进展 ›› 2014, Vol. 29 ›› Issue (1): 155-158.doi: 10.6038/pg20140120

• 院士论坛 • 上一篇    下一篇

利用信噪比差异体改进断层自动识别方法

路远1, 朱仕军1, 朱鹏宇2, 周路钧3   

  1. 1. 西南石油大学资源与环境学院, 成都 610500;
    2. 川庆钻探工程有限公司物探公司, 成都 610051;
    3. 新疆油田公司勘探开发研究院, 新疆克拉玛依 834000
  • 收稿日期:2013-10-10 修回日期:2013-12-22 出版日期:2014-02-20 发布日期:2014-02-20
  • 作者简介:路远,男,四川省成都市西南石油大学资源与环境学院教师,主要从事油气地球物理勘探研究.(E-mail:Email:landaluyuan@163.com)
  • 基金资助:

    国家科技重大专项“塔里木盆地大型碳酸盐岩油气田开发示范工程”(2011ZX05049)资助.

Improved fault automatic identification using Signal-to-noise ratio cubes

LU Yuan1, ZHU Shi-jun1, ZHU Peng-yu2, ZHOU Lu-jun3   

  1. 1. College of Resources and Environment Engineering, Southwest Petroleum University, Chengdu 610500, China;
    2. Geophysical Exploration Company of CNPC Sichuan-Changqing Drilling & Exploration Corporation, Chengdu 610051, China;
    3. Research Institute of Exploration and Development, Xinjiang Oilfield Branch, Karamay 834000, China
  • Received:2013-10-10 Revised:2013-12-22 Online:2014-02-20 Published:2014-02-20

摘要:

断层自动解释技术是近几年兴起的新技术之一.现今在断层自动识别和解释过程中主要用到相干、方差等地震属性体, 这些属性体通常会在断层位置处表现为极大值或极小值.各类属性体识别断层的能力不同, 所以属性体的选择对于断层识别的准确性至关重要.本文在信噪比定量计算的基础上, 提出一种新的地震属性体-信噪比差异体, 同时将信噪比差异体应用于断层自动追踪.通过将其与方差体相比较, 结果显示信噪比差异体可以更加精细地反映岩体破碎带, 并在断层自动追踪的过程中, 得到更加清晰的断层形态.

Abstract:

Automatic fault interpretation is one of new technology in recent years. Faults are usually detected with the use of seismic attributes such as variance and coherence, which generally shows itself as maximum or minimum at the location of fault. Each kind of attribute has different ability to identify fault, so choosing a better attribute can get clearer fault detection. In this paper, we present a new attribute- signal-to-noise ratio cubes in the foundation of signal-to-noise ratio evaluation, and use of ant tracking on the attribute results to detect faults. The variance is used as a reference attribute for comparison. The comparison results are in favor of the modified signal-to-noise, the position of the fractured belt is easy to determine, and clearer structures are detected.

中图分类号: