[1] |
Abousrafa E M, Somerville J M, Hamilton SA , et al. 2009. Pore geometrical model for the resistivity of brine saturated rocks[J]. Journal of Petroleum Science and Engineering, 65(3-4):113-122, doi: 10.1016/j.petrol.2008.12.009.
doi: 10.1016/j.petrol.2008.12.009
|
[2] |
Aguilera M S, Aguilera R . 2003. Improved models for petrophysical analysis of dual porosity reservoirs[J]. Petrophysics, 44(1):21-35.
|
[3] |
Aguilera R . 1976. Analysis of Naturally Fractured Reservoirs From Conventional Well Logs (includes associated papers 6420 and 6421)[J]. Journal of Petroleum Technology, 28(07):764-772.
doi: 10.2118/5342-PA
|
[4] |
Aguilera R F, Aguilera R P . 2004. A triple porosity model for petrophysical analysis of naturally fractured reservoirs[J]. Petrophysics, 45(2):157-166.
|
[5] |
Archie G E . 1942. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics[J]. Transactions of the AIME, 146(1):54-62, doi: 10.2118/942054-G.
doi: 10.2118/942054-G
|
[6] |
Ballay R E. 2012. The “m” Exponent in Carbonate Petrophysics. 2012. The “m” Exponent in Carbonate Petrophysics. http://www.geoneurale.com/. Accessed 15 April 2012
|
[7] |
Blunt M J, Bijeljic B, Dong H , et al. 2013. Pore-scale imaging and modelling[J]. Advances in Water Resources, 51:197-216, doi: 10.1016/j.advwatres.2012.03.003.
doi: 10.1016/j.advwatres.2012.03.003
|
[8] |
Bultreys T, de Boever W, Cnudde V . 2016. Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art[J]. Earth-Science Reviews, 155:93-128, doi: 10.1016/j.earscirev.2016.02.001.
doi: 10.1016/j.earscirev.2016.02.001
|
[9] |
Chen F X . 1987. Pore throat-cavity junction theory and its application to physical properties of rock[J]. Journal of Southwestern Petroleum Institute (in Chinese), 9(1):1-24.
|
[10] |
Corbett P WM, Wang H, Camara R N , et al. 2017. Using the porosity exponent (m) and pore-scale resistivity modelling to understand pore fabric types in coquinas (Barremian-Aptian) of the Morro do Chaves Formation, NE Brazil[J]. Marine and Petroleum Geology, 88:628-647, doi: 10.1016/j.marpetgeo.2017.08.032.
doi: 10.1016/j.marpetgeo.2017.08.032
|
[11] |
Li W, Zou C C, Wang H , et al. 2017. A model for calculating the formation resistivity factor in low and middle porosity sandstone formations considering the effect of pore geometry[J]. Journal of Petroleum Science and Engineering, 152:193-203, doi: 10.1016/j.petrol.2017.03.006.
doi: 10.1016/j.petrol.2017.03.006
|
[12] |
Li X, Qin R, Liu C , et al. 2013. The effect of rock electrical parameters on the calculation of reservoir saturation[J]. Journal of Geophysics and Engineering, 10(5):(055007) 055001-055008, doi: 10.1088/1742-2132/10/5/055007.
doi: 10.1088/1742-2132/10/5/055007
|
[13] |
Lucia F J . 1983. Petrophysical parameters estimated from visual descriptions of carbonate rocks, a field classification of carbonate pore space[J]. Journal of Petroleum Technology, 35(3):629-637, doi: 10.2118/10073-PA.
doi: 10.2118/10073-PA
|
[14] |
Müller-Huber E, Schön J, Börner F . 2015. The effect of a variable pore radius on formation resistivity factor[J]. Journal of Applied Geophysics, 116:173-179, doi: 10.1016/j.jappgeo.2015.03.011.
doi: 10.1016/j.jappgeo.2015.03.011
|
[15] |
Piedrahita J, Aguilera R. 2016. A petrophysical dual-porosity model for evaluation of secondary mineralization and tortuosity in naturally fractured reservoirs[C]. Paper presented at the SPE Low Perm Symposium, Denver, Colorado, U.S.A., 5-6 May.
|
[16] |
Tian H, Li C, Jia P . 2017. Research of water saturation interpretation models for carbonate reservoir[J]. Progress in Geophysics (in Chinese), 32(1):0279-0286, doi: 10.6038/pg20170319.
|
[17] |
Verwer K, Eberli GP, Weger RJ . 2011. Effect of pore structure on electrical resistivity in carbonates[J]. AAPG Bulletin, 95(2):175-190, doi: 10.1306/06301010047.
doi: 10.1306/06301010047
|
[18] |
Wang H . 2015. Numerical Simulation of Resistivity and Investigation of Porosity Exponent in Carbonates[D]. Institute of Petroleum Engineering,School of Energy, Geoscience, Infracture and Society,Heriot-Watt University.
|
[19] |
Wang M . 2013. Improvement and Analysis of Carbonate Reservoir Saturation Model[J]. Journal of Southwestern Petroleum University (Science & Technology Edition) (in Chinese), 35(5):31-40, doi: 10.3863/j. issn.1674-5086. 2013.05.005.
doi: 10.1080/02678370801999750
|
[20] |
Weger RJ, Eberli GP, Baechle GT , et al. 2009. Quantification of pore structure and its effect on sonic velocity and permeability in carbonates[J]. AAPG Bulletin, 93(10):1297-1317, doi: 10.1306/05270909001.
doi: 10.1306/05270909001
|
[21] |
Zeng W C, Liu X F . 2013. Interpretation of Non-Archie phenomenon for carbonate reservoir[J]. Well Logging Technology (in Chinese), 37(4):341-351.
|
[22] |
陈福煊 . 1987. 孔隙喉腔结理论及其在岩石物性中的应用[J]. 西南石油大学学报, 9(1):1-24.
doi: 10.3863/j.issn.1000-2634.1987.01.001
|
[23] |
田瀚, 李昌, 贾鹏 . 2017. 碳酸盐岩储层含水饱和度解释模型研究[J]. 地球物理学进展, 32(1) 0279-0286, doi: 10.6038/pg20170319.
|
[24] |
王敏 . 2013. 碳酸盐岩储层含水饱和度模型发展及分析[J]. 西南石油大学学报:自然科学版 35(5):31-40, doi: 10.3863/j.issn.1674-5086.2013.05.005.
doi: 10. 3863/j. issn. 1674 – 5086. 2013. 05. 005
|
[25] |
曾文冲, 刘学峰 . 2013. 碳酸盐岩非阿尔奇特性的诠释[J]. 测井技术, 37(4):341-351.
doi: 10.3969/j.issn.1004-1338.2013.04.002
|