地球物理学进展 ›› 2019, Vol. 34 ›› Issue (4): 1351-1356.doi: 10.6038/pg2019CC0109

• 固体地球物理及空间物理学(大气、行星、地球动力学、重磁电及地震学、地热学) • 上一篇    下一篇

高精度航空重力测量空间改正优化方法研究

韦建成1,2,3,肖云2,4,王利1,2,3,孟宁1,2,邹嘉盛1,2   

  1. 1. 长安大学地质工程与测绘学院,西安 710054
    2. 地理信息工程国家重点实验室,西安 710054
    3. 地理国情监测国家测绘地理信息局工程技术研究中心,西安 710054
    4. 西安测绘研究所,西安 710054
  • 收稿日期:2018-09-20 修回日期:2019-05-29 出版日期:2019-08-20 发布日期:2019-08-30
  • 作者简介:韦建成,男,1992年生,宁夏吴忠人,硕士研究生,主要研究方向为航空重力测量数据精细化处理技术研究.(E-mail: 1205834766@qq.com)
  • 基金资助:
    国家自然科学基金项目(41374083);国家自然科学基金项目(61427817);中央高校基本科研业务费专项(310826172006);中央高校基本科研业务费专项(310826172202);中央高校基本科研业务费专项(310826173101)

Research on optimization of free-air correction for high-precision airborne gravimetry

WEI Jian-cheng1,2,3,XIAO Yun2,4,WANG Li1,2,3,MENG Ning1,2,ZOU Jia-sheng1,2   

  1. 1. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China;
    2. State Key Laboratory of Geographic Information Engineering, Xi’an 710054, China;
    3. National Administration of Surveying, Mapping and Geoinformation Engineering Research Center of Geographic National Conditions Monitoring, Xi’an 710054, China;
    4. Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China;
  • Received:2018-09-20 Revised:2019-05-29 Online:2019-08-20 Published:2019-08-30

摘要:

航空重力测量精度逐步提高,达到1 mGal或更好,另外在高海拔地区、大范围区域纬度跨度很大,均要求空间改正项更精确.目前空间改正方法不完备,针对此问题,给出了重力扰动一步归算法-球谐系数法,用Somigliana公式对其正确性进行了验证,并以球谐系数法为参考,对比分析了不同空间改正公式对重力扰动归算的影响.结果表明,美国大地测量局(NGS)改进的三阶公式精度最高,H&M( Heiskanen和Moritz, 1967)二阶公式次之,我国学者广为采用的二阶公式精度较低.因此,在1 mGal或更好精度的航空重力测量,或者高海拔测量,建议采用球谐系数法或NGS改进的三阶公式进行归算,以提高航空重力测量成果精度.

关键词: 航空重力测量, 重力扰动归算, 空间改正, 球谐系数法

Abstract:

Airborne gravimetry accuracy gradually increase to 1 mGal or better, while in high altitude, large-scale regional latitude span, require free-air correction more accurate. At present, the free-air corrections is incomplete. Based on this fact, we propose spherical harmonic coefficient method, which is a one-step reduction method of gravity disturbance, and its correctness is verified by the Somigliana formula. Then analyze the influence of different free-air correction formulas on gravity disturbance reduction with the reference of spherical harmonic coefficient method. The results show that NGS-improved third order free-air correction has the highest accuracy, H&M free-air correction takes the second place, and the second-order formula widely adopted by Chinese scholars has lower accuracy. Therefore, we recommend to use the spherical harmonic coefficient method or the NGS-improved third-order formula to improve the accuracy of airborne gravimetry when at 1 mGal or better accuracy of airborne gravimetry or high-altitude surveying.

Key words: Airborne gravimetry, Gravity disturbance reduction, Free-air correction, Spherical harmonic coefficient method

中图分类号: