地球物理学进展 ›› 2019, Vol. 34 ›› Issue (4): 1303-1313.doi: 10.6038/pg2019CC0201
• 固体地球物理及空间物理学(大气、行星、地球动力学、重磁电及地震学、地热学) • 上一篇 下一篇
收稿日期:
2018-09-11
修回日期:
2019-05-05
出版日期:
2019-08-20
发布日期:
2019-08-30
通讯作者:
张莹
E-mail:yzhang@mail.iggcas.ac.cn
作者简介:
李会超,男,博士研究生,主要从事太阳风磁流体力学数值模拟研究.(E-mail: hcli@spaceweather.ac.cn)
基金资助:
LI Hui-chao1,3,ZHANG Ying2,3,4,*()
Received:
2018-09-11
Revised:
2019-05-05
Online:
2019-08-20
Published:
2019-08-30
Contact:
Ying ZHANG
E-mail:yzhang@mail.iggcas.ac.cn
摘要:
三维磁流体力学背景太阳风模型是日地耦合过程研究和空间天气数值预报的重要工具.该类模型的当前发展趋势是数据驱动的太阳风三维磁流体力学模拟,其输入参数为随时间变化的太阳连续观测,其模型输出为更接近真实的背景太阳风的三维空间分布及其随时间的演化.本文总结了背景太阳风的空间天气效应及其三维磁流体力学模型的作用和构成,综述了数据驱动的背景太阳风三维磁流体力学模拟的近年研究进展,展望了数据驱动模拟的未来发展方向.
中图分类号:
李会超, 张莹. 2019. 数据驱动的三维磁流体力学背景太阳风模拟研究进展. 地球物理学进展, 34(4): 1303-1313. doi: 10.6038/pg2019CC0201.
LI Hui-chao, ZHANG Ying. 2019. Advances in the data-driven three-dimensional magnetohydrodynamics ambient solar wind modelling. Progress in Geophysics. 34(4): 1303-1313. doi: 10.6038/pg2019CC0201.
1 | Alves M V, Echer E, Gonzalez W D . 2006. Geoeffectiveness of corotating interaction regions as measured by Dst index[J]. Journal of Geophysical Research (Space Physics), 111(A7), doi: 10.1029/2005JA011379. |
2 | Arge C N, Henney C J, Koller J , et al. 2010. Air Force Data Assimilative Photospheric Flux Transport (ADAPT) Model [A]. AIP Conference Proceedings, 1216:343-346, doi: 10.1063/1.3395870. |
3 | Arge C N, Odstrcil D, Pizzo V J , et al. 2003. Improved Method for Specifying Solar Wind Speed Near the Sun [A]. AIP Conference Proceedings, 679(1) 190-193, doi: 10.1063/1.1618574. |
4 | Bauer P, Thorpe A, Brunet G . 2015. The quiet revolution of numerical weather prediction[J]. Nature, 525:47-55, doi: 10.1038/nature14956. |
5 | Byrne J P, Maloney S A, McAteer R T J , et al. 2010. Propagation of an Earth-directed coronal mass ejection in three dimensions[J]. Nature Communications, 1:74, doi: 10.1038/ncomms1077. |
6 | Case A W, Spence H E, Owens M J , et al. 2008. Ambient solar wind’s effect on ICME transit times[J]. Geophys. Res. Lett., 35(15):L15105, doi: 10.1029/2008GL034493. |
7 | Cash M D, Biesecker D A, Pizzo V , et al. 2015. Ensemble Modeling of the 23 July 2012 Coronal Mass Ejection[J]. Space Weather, 13(10):611-625, doi: 10.1002/2015SW001232. |
8 | Chen G M, Xu J Y, Wang W B , et al. 2014. A comparison of the effects of CIR-and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: Statistical studies[J]. Journal of Geophysical Research (Space Physics), 119(9):7928-7939, doi: 10.1002/2014JA019831. |
9 | Cloke H L, Pappenberger F . 2008. Evaluating forecasts of extreme events for hydrological applications: an approach for screening unfamiliar performance measures[J]. Meteorological Applications, 15(1):181-197, doi: 10.1002/met.58. |
10 | Cranmer S R, Gibson S E, Riley P . 2017. Origins of the Ambient Solar Wind: Implications for Space Weather[J]. Space Sci. Rev., 212(3-4):1345-1384, doi: 10.1007/s11214-017-0416-y. |
11 | Eastwood J P, Biffis E, Hapgood M A , et al. 2017. The economic impact of space weather: Where do we stand?[J]. Risk Analysis, 37(2):206-218, doi: 10.1111/risa.12765. |
12 | Feng X S, Jiang C W, Xiang C Q , et al. 2012 a. A data-driven model for the global coronal evolution[J]. Astrophys. J., 758(1):62, doi: 10.1088/0004-637X/758/1/62. |
13 | Feng X S, Li C X, Xiang C Q , et al. 2017. Data-driven Modeling of the Solar Corona by a New Three-dimensional Path-conservative Osher-Solomon MHD Model[J]. Astrophys. J. Suppl. Ser., 233:10, doi: 10.3847/1538-4365/aa957a. |
14 | Feng X S, Ma X P, Xiang C Q . 2015. Data-driven modeling of the solar wind from 1 Rs to 1 AU[J]. Journal of Geophysical Research (Space Physics), 120(12):10159-10174,doi: 10.1002/2015JA021911. |
15 | Feng X S, Wu S T, Wei F S , et al. 2003. A Class of TVD Type Combined Numerical Scheme for MHD Equations With a Survey About Numerical Methods in Solar Wind Simulations[J]. Space Sci. Rev., 107(1-2):43-53, doi: 10.1023/A:1025547016708. |
16 | Feng X S, Xiang C Q, Zhong D K . 2011 a. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms[J]. Sci Sin-Terrae (in Chinese), 41(1):1-28. |
17 | Feng X S, Xiang C Q, Zhong D K . 2013 a. Numerical study of interplanetary solar storms[J]. Sci Sin-Terrae (in Chinese), 43(6):912-933. |
18 |
Feng X S, Xiang C Q, Zhong D K , et al. 2014 a. SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes[J]. Computer Physics Communications, 185(7):1965-1980, doi: 10.1016/j.cpc.2014.03.027.
doi: 10.1016/j.cpc.2014.03.027 |
19 | Feng X S, Yang L P, Xiang C Q , et al. 2012 b. Validation of the 3D AMR SIP-CESE Solar Wind Model for Four Carrington Rotations[J]. Solar Phys., 279(1):207-229, doi: 10.1007/s11207-012-9969-9. |
20 | Feng X S, Yang L P, Xiang C Q, et al. 2012 c. Numerical Study of the Global Corona for CR 2055 Driven by Daily Updated Synoptic Magnetic Field [A]. Numerical Modeling of Space Plasma Slows (ASTRONUM 2011)[C]: 202-208. |
21 | Feng X S, Yang L P, Xiang C Q , et al. 2010. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophys. J., 723(1):300-319, doi: 10.1088/0004-637X/723/1/300. |
22 | Feng X S, Zhang M, Zhou Y F . 2014 b. A New Three-dimensional Solar Wind Model in Spherical Coordinates with a Six-component Grid[J]. Astrophys. J. Suppl. Ser., 214(1):6, doi: 10.1088/0067-0049/214/1/6. |
23 | Feng X S, Zhang S H, Xiang C Q , et al. 2011 b. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid[J]. Astrophys. J., 734(1):50, doi: 10.1088/0004-637X/734/1/50. |
24 | Feng X S, Zhong D K, Xiang C Q , et al. 2013 b. GPU-accelerated computing of three-dimensional solar wind background[J]. Science China Earth Sciences, 56(11):1864-1880, doi: 10.1007/s11430-013-4661-y. |
25 | Feng X S, Zhou Y F, Wu S T . 2007. A Novel Numerical Implementation for Solar Wind Modeling by the Modified Conservation Element/Solution Element Method[J]. Astrophys. J., 655(2):1110-1126, doi: 10.1086/510121. |
26 | Fletcher L, Cargill P J, Antiochos S K , et al. 2015. Structures in the outer solar atmosphere[J]. Space Sci. Rev., 188(1-4):211-249, doi: 10.1007/s11214-014-0111-1. |
27 | Frazin R A, Vásquez A M, Kamalabadi F . 2009. Quantitative, Three-dimensional Analysis of the Global Corona with Multi-spacecraft Differential Emission Measure Tomography[J]. Astrophys. J., 701(1):547-560, doi: 10.1088/0004-637X/701/1/547. |
28 | Gressl C, Veronig A M, Temmer M , et al. 2014. Comparative Study of MHD Modeling of the Background Solar Wind[J]. Solar Phys., 289(5):1783-1801, doi: 10.1007/s11207-013-0421-6. |
29 | Groth C P T, De Zeeuw D L, Gombosi T I , et al. 2000. Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere[J]. J.Geophys.Res., 105(A11):25053-25078, doi: 10.1029/2000JA900093. |
30 | Hayashi K . 2005. Magnetohydrodynamic Simulations of the Solar Corona and Solar Wind Using a Boundary Treatment to Limit Solar Wind Mass Flux[J]. Astrophys. J. Suppl. Ser., 161:480-494, doi: 10.1086/491791. |
31 | Hayashi K . 2012. An MHD simulation model of time-dependent co-rotating solar wind[J]. Journal of Geophysical Research (Space Physics), 117(A8), doi: 10.1029/2011JA017490. |
32 | Hayashi K . 2013. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps[J]. Journal of Geophysical Research (Space Physics), 118(11):6889-6906, doi: 10.1002/2013JA018991. |
33 | Jian L K, MacNeice P J, Taktakishvili A , et al. 2015. Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC[J]. Space Weather, 13(5):316-338, doi: 10.1002/2015SW001174. |
34 | Jiang C W, Cui S X, Feng X S . 2012. Solving the Euler and Navier-Stokes equations by the AMR-CESE method[J]. Computers & Fluids, 54:105-117, doi: 10.1016/j.compfluid.2011.10.006. |
35 | Jiang C W, Feng X S, Zhang J , et al. 2010. AMR Simulations of Magnetohydrodynamic Problems by the CESE Method in Curvilinear Coordinates[J]. Solar Phys., 267(2):463-491, doi: 10.1007/s11207-010-9649-6. |
36 | Jin M, Manchester W B, van der Holst B , et al. 2016. Chromosphere to 1 AU Simulation of the 2011 March 7th Event: A Comprehensive Study of Coronal Mass Ejection Propagation[J]. Astrophys. J., 834(4):172, doi: 10.3847/1538-4357/834/2/172. |
37 | Jones R A, Breen A R, Fallows R A , et al. 2007. Interaction between coronal mass ejections and the solar wind[J]. Journal of Geophysical Research (Space Physics), 112(A8), doi: 10.1029/2006JA011875. |
38 | Kilpua E K J, Balogh A, von Steiger R , et al. 2017. Geoeffective Properties of Solar Transients and Stream Interaction Regions[J]. Space Sci. Rev., 212(3-4):1271-1314, doi: 10.1007/s11214-017-0411-3. |
39 | Lee C O, Arge C N, Odstrčil D , et al. 2013. Ensemble Modeling of CME Propagation[J]. Solar Phys., 285(1-2):349-368, doi: 10.1007/s11207-012-9980-1. |
40 | Leutbecher M, Palmer T N . 2008. Ensemble forecasting[J]. Journal of Computational Physics, 227(7):3515-3539, doi: 10.1016/j.jcp.2007.02.014. |
41 | Li H C, Feng X S . 2018. CESE-HLL Magnetic Field-Driven Modeling of the Background Solar Wind During Year 2008[J]. Journal of Geophysical Research (Space Physics), 123(6):4488-4509, doi: 10.1029/2017JA025125. |
42 | Linker J A, Caplan R M, Downs C, et al. 2016. An Empirically Driven Time-Dependent Model of the Solar Wind [A]. 10TH International Conference on Numerical Modeling of Space Plasma Flows: ASTRONUM-2015[C], 012012, doi: 10.1088/1742-6596/719/1/012012. |
43 | Linker J A, Caplan R M, Downs C , et al. 2017. The open flux problem[J]. Astrophys. J., 848(1):70, doi: 10.3847/1538-4357/aa8a70. |
44 | Linker J A, Mikić Z, Biesecker D A , et al. 1999. Magnetohydrodynamic modeling of the solar corona during Whole Sun Month[J]. J. Geophys. Res., 104(A5):9809-9830, doi: 10.1029/1998JA900159. |
45 | Lionello R, Downs C, Linker J A , et al. 2013. Magnetohydrodynamic simulations of interplanetary coronal mass ejections[J]. Astrophys. J., 777(1):76, doi: 10.1088/0004-637X/777/1/76. |
46 | Lionello R, Linker J A, Mikic Z . 2009. Multispectral Emission of the Sun During the First Whole Sun Month: Magnetohydrodynamic Simulations[J]. Astrophys. J., 690(1):902-912, doi: 10.1088/0004-637X/690/1/902. |
47 | Liu Y, Hoeksema J T, Sun X , et al. 2017. Vector Magnetic Field Synoptic Charts from the Helioseismic and Magnetic Imager (HMI)[J]. Solar Phys., 292:29, doi: 10.1007/s11207-017-1056-9. |
48 | Lockwood M, Owens M J, Barnard L A , et al. 2016. On the origins and timescales of geoeffective IMF[J]. Space Weather, 14:406-432, doi: 10.1002/2016SW001375. |
49 | Mackay D H, Yeates A R . 2012. The Sun’s Global Photospheric and Coronal Magnetic Fields: Observations and Models[J]. Living Reviews in Solar Physics, 9:6, doi: 10.12942/lrsp-2012-6. |
50 | MacNeice P . 2009. Validation of community models: Identifying events in space weather model timelines[J]. Space Weather, 7:6, doi: 10.1029/2009SW000463. |
51 | McGregor S L, Hughes W J, Arge C N , et al. 2011. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind[J]. Journal of Geophysical Research (Space Physics), 116(A3), doi: 10.1029/2010JA015881. |
52 | Meng X, van der Holst B, Toth G , et al. 2015. Alfvén wave solar model (AWSoM): proton temperature anisotropy and solar wind acceleration[J]. Mon. Not. Roy. Astron. Soc., 454(4):3697-3709, doi: 10.1093/mnras/stv2249. |
53 | Merkin V G, Lyon J G, Lario D , et al. 2016. Time-dependent magnetohydrodynamic simulations of the inner heliosphere[J]. Journal of Geophysical Research (Space Physics), 121(4):2866-2890, doi: 10.1002/2015JA022200. |
54 | Mikić Z, Linker J A, Schnack D D , et al. 1999. Magnetohydrodynamic modeling of the global solar corona[J]. Physics of Plasmas, 6(5):2217-2224, doi: 10.1063/1.873474. |
55 | Millward G, Biesecker D, Odstrcil D , et al. 2011. Wang-Sheeley-Arge-Enlil Cone Model Transitions to Operations[J]. Space Weather, 9(3), doi: 10.1029/2011SW000663. |
56 | Nakamizo A, Tanaka T, Kubo Y , et al. 2009. Development of the 3-D MHD model of the solar corona-solar wind combining system[J]. Journal of Geophysical Research (Space Physics), 114(A7), doi: 10.1029/2008JA013844. |
57 | Obama B . 2016. Executive Order: Coordinating efforts to prepare the nation for space weather events [Z]. Washington, D.C.: The White House. |
58 |
Odstrcil D . 2003. Modeling 3-D solar wind structure[J]. Advances in Space Research, 32(4):497-506, doi: 10.1016/S0273-1177(03)00332-6.
doi: 10.1016/S0273-1177(03)00332-6 |
59 | Owens M J, Lockwood M, Barnard L A . 2017. Coronal mass ejections are not coherent magnetohydrodynamic structures[J]. Scientific Reports, 7:4152, doi: 10.1038/s41598-017-04546-3. |
60 | Owens M J, Riley P . 2017. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional “Upwind” Scheme[J]. Space Weather, 15(11):1461-1474, doi: 10.1002/2017SW001679. |
61 | Pizzo V J, de Koning C, Cash M , et al. 2015. Theoretical basis for operational ensemble forecasting of coronal mass ejections[J]. Space Weather, 13(10):676-697, doi: 10.1002/2015SW001221. |
62 | Powell K G, Roe P L, Linde T J , et al. 1999. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics[J]. Journal of Computational Physics, 154(2):284-309, doi: 10.1006/jcph.1999.6299. |
63 | Richardson I G, Cane H V . 2012. Solar wind drivers of geomagnetic storms during more than four solar cycles[J]. Journal of Space Weather and Space Climate, 2(27):A01, doi: 10.1051/swsc/2012001. |
64 | Riley P, Linker J A, Mikić Z . 2001. An empirically-driven global MHD model of the solar corona and inner heliosphere[J]. J. Geophys. Res., 106(A8):15889-15902, doi: 10.1029/2000JA000121. |
65 | Riley P, Luhmann J G . 2012. Interplanetary signatures of unipolar streamers and the origin of the slow solar wind[J]. Solar Phys., 277(2):355-373, doi: 10.1007/s11207-011-9909-0. |
66 | Russell C T, McPherron R L . 1973. Semiannual variation of geomagnetic activity[J]. J. Geophys. Res., 78(1):92-108, doi: 10.1029/JA078i001p00092. |
67 | Schwenn R . 2006. Space Weather: The Solar Perspective[J]. Living Reviews in Solar Physics, 3:2, doi: 10.12942/lrsp-2006-2. |
68 | Shen F, Shen C, Zhang J , et al. 2014. Evolution of the 12 July 2012 CME from the Sun to the Earth: Data-constrained three-dimensional MHD simulations[J]. Journal of Geophysical Research (Space Physics), 119(9):7128-7141, doi: 10.1002/2014JA020365. |
69 | Shiota D, Kataoka R, Miyoshi Y , et al. 2014. Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets[J]. Space Weather, 12(4):187-204, doi: 10.1002/2013SW000989. |
70 | Siscoe G, Baker D, Weigel R , et al. 2004. Roles of empirical modeling within CISM[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 66(15-16):1481-1489, doi: 10.1016/j.jastp.2004.03.028. |
71 | Spence H, Baker D, Burns A , et al. 2004. Center for integrated space weather modeling metrics plan and initial model validation results[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 66(15):1499-1507, doi: 10.1016/j.jastp.2004.03.029. |
72 | Temmer M, Rollett T, Mostl C , et al. 2011. Influence of the Ambient Solar Wind Flow on the Propagation Behavior of Interplanetary Coronal Mass Ejections[J]. Astrophys. J., 743(2):101, doi: 10.1088/0004-637X/743/2/101. |
73 | Tóth G . 2000. The ▽·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes[J]. Journal of Computational Physics, 161(2):605-652, doi: 10.1006/jcph.2000.6519. |
74 | Tóth G . 2006. Flexible, efficient and robust algorithm for parallel execution and coupling of components in a framework[J]. Computer Physics Communications, 174(10):793-802, doi: 10.1016/j.cpc.2005.12.017. |
75 |
Tóth G, van der Holst B, Sokolov I V , et al. 2012. Adaptive numerical algorithms in space weather modeling[J]. Journal of Computational Physics, 231(3):870-903, doi: 10.1016/j.jcp.2011.02.006.
doi: 10.1016/j.jcp.2011.02.006 |
76 | van der Holst B, Manchester W B, Frazin R A , et al. 2010. A Data-driven, Two-temperature Solar Wind Model with Alfvén Waves[J]. Astrophys. J., 725(1):1373-1383, doi: 10.1088/0004-637X/725/1/1373. |
77 | van der Holst B, Sokolov I V, Meng X , et al. 2014. Alfvén Wave Solar Model (AWSoM): Coronal Heating[J]. Astrophys. J., 782(2):81, doi: 10.1088/0004-637X/782/2/81. |
78 | Vásquez A M . 2016. Seeing the solar corona in three dimensions[J]. Advances in Space Research, 57(6):1286-1293, doi: 10.1016/j.asr.2015.05.047. |
79 | Wang X Y . 2015. A Summary of the Space-Time Conservation Element and Solution Element (CESE) Method: NASA/TM-2015-218743 [R]: National Aeronautics and Space Administration. |
80 | Wang Y M, Grappin R, Robbrecht E , et al. 2012. On the nature of the solar wind from coronal pseudostreamers[J]. Astrophys. J., 749(2):182, doi: 10.1088/0004-637X/749/2/182. |
81 | Wang Y M, Robbrecht E . 2011. Asymmetric sunspot activity and the southward displacement of the heliospheric current sheet[J]. Astrophys. J., 736(2):136, doi: 10.1088/0004-637X/736/2/136. |
82 | Wang Y M, Sheeley N R Jr, Rich N B . 2007. Coronal Pseudostreamers[J]. Astrophys. J., 658(2):1340-1348, doi: 10.1086/511416. |
83 | Wei F, Dryer M . 1991. Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane[J]. Solar Phys., 132(2):373-394, doi: 10.1007/BF00152294. |
84 | Wiengarten T, Kleimann J, Fichtner H , et al. 2013. MHD simulation of the inner-heliospheric magnetic field[J]. Journal of Geophysical Research (Space Physics), 118(1):29-44, doi: 10.1029/2012JA018089. |
85 | Wu S T, Dryer M . 2015. Comparative analyses of current three-dimensional numerical solar wind models[J]. Science China Earth Sciences, 58(6):839-858, doi: 10.1007/s11430-015-5062-1. |
86 | Yalim M S, Pogorelov N, Liu Y. 2017. A data-driven MHD model of the global solar corona within Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) [A]. 11th International Conference on Numerical Modeling of Space Plasma Flows[C], 012015, doi: 10.1088/1742-6596/837/1/012015. |
87 |
Yang L P, Feng X S, Xiang C Q , et al. 2011 a. Numerical Validation and Comparison of Three Solar Wind Heating Methods by the SIP-CESE MHD Model[J]. Chinese Physics Letters, 28(3):039601, doi: 10.1088/0256-307X/28/3/039601.
doi: 10.1088/0256-307X/28/3/039601 |
88 | Yang L P, Feng X S, Xiang C Q , et al. 2011 b. Simulation of the Unusual Solar Minimum with 3D SIP-CESE MHD Model by Comparison with Multi-Satellite Observations[J]. Solar Phys., 271(1-2):91-110, doi: 10.1007/s11207-011-9785-7. |
89 | Yang L P, Feng X S, Xiang C Q , et al. 2012. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data[J]. Journal of Geophysical Research (Space Physics), 117(A8), doi: 10.1029/2011JA017494. |
90 | Yang Y, Feng X S, Jiang C W . 2017. A high-order CESE scheme with a new divergence-free method for MHD numerical simulation[J]. Journal of Computational Physics, 349:561-581, doi: 10.1016/j.jcp.2017.08.019. |
91 | Yeh T, Dryer M . 1985. A constraint on boundary data for magnetic solenoidality in MHD calculations[J]. Astrophys. Space Sci., 117(1):165-171, doi: 10.1007/BF00660919. |
92 | Zeng Q C . 2013. Weather forecast-from empirical to physicomathematical theory and super-computing system engineering[J]. Physics (in Chinese), 42(05):300-314. |
93 | Zhang M, Feng X S . 2015. Implicit dual-time stepping method for a solar wind model in spherical coordinates[J]. Computers & Fluids, 115:115-123, doi: 10.1016/j.compfluid.2015.03.020. |
94 | Zhang M, Feng X S . 2016. A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation[J]. Frontiers in Astronomy and Space Sciences, 3:6, doi: 10.3389/fspas.2016.00006. |
95 | Zhang Y, Sun W, Feng X S , et al. 2008. Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23[J]. Journal of Geophysical Research (Space Physics), 113(A8), doi: 10.1029/2008JA013095. |
96 | Zhang Z C, John Yu S T, Chang S C . 2002. A space-time conservation element and solution element method for solving the two-and three-dimensional unsteady euler equations using quadrilateral and hexahedral meshes[J]. J. Comput. Phys., 175(1):168-199, doi: 10.1006/jcph.2001.6934. |
97 | Zhao X P, Hoeksema J T . 2010. The magnetic field at the inner boundary of the heliosphere around solar minimum[J]. Solar Physics, 266:379-390, doi: 10.1007/s11207-010-9618-0. |
98 | Zhou Y F, Feng X S . 2013. MHD numerical study of the latitudinal deflection of coronal mass ejection[J]. Journal of Geophysical Research (Space Physics), 118(10):6007-6018, doi: 10.1002/2013JA018976. |
99 | Zhou Y F, Feng X S . 2014. An improved CESE method and its application to steady-state coronal structure simulation[J]. Science China Earth Sciences, 57(1), doi: 10.1007/s11430-013-4628-z. |
100 | Zhou Y F, Feng X S . 2017. Numerical study of the propagation characteristics of coronal mass ejections in a structured ambient solar wind[J]. Journal of Geophysical Research (Space Physics), 122(2):1451-1462, doi: 10.1002/2016JA023053. |
101 | Zhou Y F, Feng X S, Wu S T , et al. 2012. Using a 3-D spherical plasmoid to interpret the Sun-to-Earth propagation of the 4 November 1997 coronal mass ejection event[J]. Journal of Geophysical Research (Space Physics), 117(A1), doi: 10.1029/2010JA016380. |
102 | 冯学尚, 向长青, 钟鼎坤 . 2011. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学: 地球科学, 41(1):1-28. |
103 | 冯学尚, 向长青, 钟鼎坤 . 2013. 行星际太阳风暴的数值模拟研究[J]. 中国科学: 地球科学, 43(6):912-933. |
104 | 曾庆存 . 2013. 天气预报——由经验到物理数学理论和超级计算[J]. 物理, 42(05):300-314. |
[1] | 曾胜强,刘争平,奉建军,肖薄,黄云,李京京. 隧道反射地震超前预报波场分离方法的数值模拟研究[J]. 地球物理学进展, 2019, 34(2): 817-825. |
[2] | 佘松盛,鹿琪,刘四新,李晔,王焱,张宫博. 基于多相流模型和探地雷达正演模拟的LNAPLs探测研究[J]. 地球物理学进展, 2019, 34(1): 371-378. |
[3] | 宋佳佳,孙建孟,王敏,傅爱兵,高建申. 断层内部结构研究进展[J]. 地球物理学进展, 2018, 33(5): 1956-1966. |
[4] | 王敏玲,王洪华. 探地雷达波动方程数值模拟方法研究进展综述[J]. 地球物理学进展, 2018, 33(5): 1974-1984. |
[5] | 王振山,魏东平. 全球板块运动三联点形成与演化规律的研究进展[J]. 地球物理学进展, 2018, 33(5): 1834-1843. |
[6] | 金震,李山有,蔡辉腾,李培,李海艳,徐嘉隽. 谱白化叠加方法在气枪信号检测中的应用[J]. 地球物理学进展, 2018, 33(4): 1358-1365. |
[7] | 王晓畅,胡松,孔强夫. 双侧向测井响应计算洞穴充填物电阻率方法[J]. 地球物理学进展, 2018, 33(3): 1155-1160. |
[8] | 郝晋荣,李毛飞,廖昱翔,樊程,胡代明. 直流电阻率法高阻管道漏点位置的探测与分析[J]. 地球物理学进展, 2018, 33(2): 803-807. |
[9] | 蒋林城,肖宏跃,丁尚见,贾毅,吴强. 跨孔电阻率法装置灵敏度分析及分辨率讨论[J]. 地球物理学进展, 2018, 33(2): 815-822. |
[10] | 陈卫东,付丹红,苗世光,周海,崔方. 气溶胶污染对夏季降水精细数值预报的影响研究[J]. 地球物理学进展, 2018, 33(1): 10-18. |
[11] | 孙婧,王德利,王通,张延保,王铁兴,田密. 基于双程波动方程的多次波照明分析方法研究[J]. 地球物理学进展, 2018, 33(1): 243-249. |
[12] | 皮娇龙,滕吉文,丁志峰,杨辉. 青藏高原东北缘六盘山构造带及邻域的动力学响应数值模拟[J]. 地球物理学进展, 2018, 33(1): 64-73. |
[13] | 孙玉军,胡道功,张怀,范桃园,张耀玲,李冰,石耀霖. 青藏高原东北缘岩石圈变形方式的动力学模拟研究[J]. 地球物理学进展, 2017, 32(6): 2383-2393. |
[14] | 胡松,郭洪波,王昌学,孔强夫. 水平井随钻电阻率与双侧向响应差异影响因素分析[J]. 地球物理学进展, 2017, 32(5): 1999-2008. |
[15] | 李江,李庆春,张向辉. 黄陵矿区2号煤层构造应力场分析[J]. 地球物理学进展, 2017, 32(5): 2009-2013. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||