地球物理学进展 ›› 2019, Vol. 34 ›› Issue (4): 1644-1654.doi: 10.6038/pg2019CC0243

• 应用地球物理学Ⅱ(海洋、工程、环境、仪器等) • 上一篇    下一篇

主动源OBS探测技术及应用进展

刘训矩1,2,郑彦鹏1,2,*(),刘洋廷1,2,华清峰1,2,李先锋1,2,李祖辉1,2,马龙1,2   

  1. 1. 海洋沉积与环境地质国家海洋局重点实验室,国家海洋局第一海洋研究所,山东青岛 266061
    2. 青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室,山东青岛 266061
  • 收稿日期:2018-09-17 修回日期:2019-05-10 出版日期:2019-08-20 发布日期:2019-08-30
  • 通讯作者: 郑彦鹏 E-mail:zhengyp@fio.org.cn
  • 作者简介:刘训矩,男,1994年生,山东德州人,在读硕士研究生,研究方向为海洋地球物理.(E-mail: 1426812128@qq.com)
  • 基金资助:
    国家自然科学基金委员会-山东省人民政府海洋科学研究中心联合资助项目(U1606401);中央级公益性科研院所基本科研业务费专项资金资助项目(2018Q02);泰山学者工程专项经费项目(TSPD20161007);山东省自然科学基金(ZR2018QD003);青岛海洋科学与技术国家实验室主任基金(QNLM201710);青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2015ASKJ03);青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2016ASKJ15);青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2016ASKJ13)

Active OBS exploration and its application progress

LIU Xun-ju1,2,ZHENG Yan-peng1,2,*(),LIU Yang-ting1,2,HUA Qing-feng1,2,LI Xian-feng1,2,LI Zu-hui1,2,MA Long1,2   

  1. 1. Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, SOA, Shandong Qingdao 266061, China
    2. Laboratory of Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Shandong Qingdao 266061, China
  • Received:2018-09-17 Revised:2019-05-10 Online:2019-08-20 Published:2019-08-30
  • Contact: Yan-peng ZHENG E-mail:zhengyp@fio.org.cn

摘要:

海底地震仪(OBS)是一种将检波器放在海底的地震观测装置,能够记录地震产生的P、S波,既能用于天然地震(被动源)观测,又能用于海上人工地震(主动源)勘探.近年来OBS发展迅速,世界上很多国家都对其进行了研发并应用到了实际的地震勘探中.主动源OBS数据处理流程主要包括数据格式的转换、二次定位、时差校正、基准面校正、水平(XY)分量旋转、波场分离、增益恢复、滤波、反褶积、P波、PS波速度分析、偏移成像等.主动源OBS探测技术广泛应用于天然气水合物、油气资源勘探和海洋工程与海底深部结构调查等方面.在水合物与油气勘探中,通过纵横波联合反演,查明速度异常与水合物层、游离气层或含油气层的关系,更好的圈定储层的范围;在海洋工程调查中利用Scholte波对海底沉积物进行成像,并利用成像结果对其进行评价,以减少工程建设中海底活动造成的损害;在海底深部结构研究中,主动源OBS探测为深部地壳与地幔速度结构分析、海底构造活动和盆地演化等方面的研究提供了良好的数据,弥补了以往方法的不足,为后期的地质地球物理解释工作奠定了基础.今后随着仪器的发展和数据处理技术的进步,OBS在以后的地球物理勘探中必将发挥更大的作用.

关键词: 海底地震仪, 工作方法, 数据处理, 水合物勘探, 油气探测, 海洋工程, 地壳结构探测

Abstract:

The Ocean Bottom Seismometer (OBS) is a seismic observation device that places detector on the seabed and can record P and S waves generated by earthquakes. It can be used both for natural seismic (passive source) observations and for artificial earthquakes (active Source) in ocean exploration. In recent years, OBS has developed rapidly in the exploration of the seabed. Many countries have developed and applied it to seismic exploration and achieved some favorable results. The structure and working principle of OBS produced in various countries are roughly the same, and the domestically developed OBS also reach the advanced level in the world. Active OBS data processing flow mainly includes: data format conversion, secondary positioning, time difference correction, datum correction,horizontal(X,Y)component rotation,wave field separation, gain recovery, filtering, deconvolution, P wave, PS wave velocity analysis, migration imaging, etc. The technology is widely used in natural gas hydrates, oil and gas resources exploration and marine engineering and deep seabed structure surveys. Through the combination of P and S-wave inversion, the relationship between velocity anomaly and hydrate, free gas, or hydrocarbon bearing formations can be identified to better define the scope of reservoirs. Scholte waves are used to image sea bottom sediments in marine engineering surveys and evaluated by imaging results to reduce damage caused by underwater activities during construction. In the survey of the deep structure of the seafloor, OBS has been widely used in the sea areas of the South China Sea, Bohai Sea and the Yellow Sea. This method can provides better data for deep crustal and mantle velocity structure analysis, submarine tectonic activity and basin evolution, make up for the shortcomings of the previous methods, and laid the foundation for the later geological geophysical interpretation. With the development of instruments and advances in data processing technology, OBS will play a greater role in future geophysical exploration.

Key words: Ocean bottom seismometer, Work methods, Data process, Hydrate exploration, Oil and gas exploration, Marine engineering, Crust structure detection

中图分类号: