地球物理学进展 ›› 2018, Vol. 33 ›› Issue (5): 1956-1966.doi: 10.6038/pg2018BB0345
• 应用地球物理学Ⅰ(油气及金属矿产地球物理勘探) • 上一篇 下一篇
收稿日期:
2017-12-04
修回日期:
2018-08-29
出版日期:
2018-10-20
发布日期:
2019-01-11
作者简介:
宋佳佳,女,1992年生,河南驻马店人,硕士,主要从事测井解释与方法及断裂带结构特征研究.
基金资助:
SONG Jia-jia1(),SUN Jian-meng1,WANG Min2,FU Ai-bing2,GAO Jian-shen3
Received:
2017-12-04
Revised:
2018-08-29
Online:
2018-10-20
Published:
2019-01-11
摘要:
断层在复杂油气藏中广泛存在,在油气田开发中具有重要的意义.断层内部结构作为断裂带相关研究的基石,受到了学者的广泛关注,国内外研究学者对断层内部结构的研究及断层相关研究做了大量的工作及探索,并获得了长足发展.当前断层相关研究主要从宏观、微观两个方面进行,宏观上分区段研究其构造特性;微观上研究不同组分的微裂缝、擦痕和岩体颗粒内部的微裂隙等断层微观特性.其中,研究方法主要有露头观察、岩芯观测、地震勘探、测井方法、物理模拟及数值模拟等.综合各种研究方法,紧跟当前新兴的探测技术,尝试老问题新方法,定量评价和系统研究断层内部结构是未来发展的方向.本次对断层内部结构研究进展和相关研究成果进行梳理,并对今后的研究进行了展望,为后续的断层相关研究提供借鉴和参考.
中图分类号:
宋佳佳, 孙建孟, 王敏, 傅爱兵, 高建申. 2018. 断层内部结构研究进展. 地球物理学进展, 33(5): 1956-1966. doi: 10.6038/pg2018BB0345.
SONG Jia-jia, SUN Jian-meng, WANG Min, FU Ai-bing, GAO Jian-shen. 2018. Research progress in the internal structure of the fault. Progress in Geophysics. 33(5): 1956-1966. doi: 10.6038/pg2018BB0345.
1 |
Anders M H, Schneider J R, Scholz C H , et al. 2013. Mode I microfracturing and fluid flow in damage zones: The key to distinguishing faults from slides[J]. Journal of Structural Geology, 48:113-125.
doi: 10.1016/j.jsg.2012.11.010 |
2 |
Antonellini M A, Aydin A, Pollard D D . 1994. Microstructure of deformation bands in porous sandstones at Arches National Park, Utah[J]. Journal of Structural Geology, 16(7):941-959.
doi: 10.1016/0191-8141(94)90077-9 |
3 |
Bastesen E, Braathen A . 2010. Extensional faults in fine grained carbonates-analysis of fault core lithology and thickness-displacement relationships[J]. Journal of Structural Geology, 32(11):1609-1628.
doi: 10.1016/j.jsg.2010.09.008 |
4 |
Bense V F, Van den Berg E H, Van Balen R T . 2003. Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands[J]. Hydrogeology Journal, 11(3):319-332.
doi: 10.1007/s10040-003-0262-8 |
5 |
Boutareaud S, Wibberley C A J, Fabbri O , et al. 2008. Permeability structure and co-seismic thermal pressurization on fault branches: insights from the Usukidani fault, Japan[J]. Geological Society London Special Publications, 299(1):341-361.
doi: 10.1144/SP299.20 |
6 |
Caine J S, Tomusiak S R A . 2003. Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain Front Range[J]. Geological Society of America Bulletin, 115(11):1410-1424.
doi: 10.1130/B25088.1 |
7 |
Cai S Y, Yi H W, Li C C , et al. 2016. Technology of Strain Analysis and Fracture Prediction Based on DEM Numerical Simulation[J]. Geological Journal of China Universities (in Chinese), 22(1):183-193.
doi: 10.16108/j.issn1006-7493.2015235 |
8 |
Chance A J E, Worden K, Tomlinson G R . 1994. Processing signals for damage detection in structures using neural networks[J]. Proc Spie, 2191: 187-198.
doi: 10.1117/12.173946 |
9 | Chen Wei . 2011. The structural characteristics of the fault zone in petroliferous basin and its relationship with hydrocarbon migration and accumulation [Ph.D. thesis]. Qingdao: China University Of Petroleum (Hua Dong)(in Chinese). |
10 |
Childs C, Manzocchi T, Walsh J J , et al. 2009. A geometric model of fault zone and fault rock thickness variations[J]. Journal of Structural Geology, 31(2):117-127.
doi: 10.1016/j.jsg.2008.08.009 |
11 | Cohrs F J R . 2012. Seismoelectric Imaging of a Shallow Fault System Employing Fault Guided Waves[J]. Seismoelectric. |
12 |
Choi J H, Edwards P, Ko K , et al. 2016. Definition and classification of fault damage zones: A review and a new methodological approach[J]. Earth-Science Reviews, 152:70-87.
doi: 10.1016/j.earscirev.2015.11.006 |
13 |
Collettini C, Carpenter B M, Viti C , et al. 2014. Fault structure and slip localization in carbonate-bearing normal faults: an example from the Northern Apennines of Italy[J]. Journal of Structural Geology. 67(ParA), 154-166.
doi: 10.1016/j.jsg.2014.07.017 |
14 |
Delogkos E, Childs C, Manzocchi T , et al. 2017. The role of bed-parallel slip in the development of complex normal fault zones[J]. Journal of Structural Geology, 97:199-211.
doi: 10.1016/j.jsg.2017.02.014 |
15 | Ding Pinbo, Di Bangrang, Wei Jianxin , et al. 2017. Velocity and anisotropy influenced by different scale fractures: Experiments on synthetic rocks with controlled fractures[J]. Chinese J. Geophys. (in Chinese), 60(4):1538-1546, doi: 10.6038/cjg20170426. |
16 |
Eichhubl P, Hooker J N, Laubach S E . 2010. Pure and shear-enhanced compaction bands in Aztec Sandstone[J]. Journal of Structural Geology, 32(12):1873-1886.
doi: 10.1016/j.jsg.2010.02.004 |
17 | Fan Jichang, Liu Mingjun . 2007. A Method for Determining the Internal Structure and Physical Parameters of the Fracture Zone[J]. Oil Geophysical Prospecting (in chinese), 42(2):164-169. |
18 |
Fan Jianming, Qu Xuefeng, Wang Chong , et al. 2016. Natural Fracture Distribution and a New Method Predicting Effective Fractures in Tight Oil Reservoirs of Ordos Basin, NW China[J]. Petroleum Exploration And Development (in chinese), 43(5):740-748.
doi: 10.1016/S1876-3804(16)30089-1 |
19 |
Faulkner D R, Lewis A C, Rutter E H . 2003. On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain[J]. Tectonophysics, 367(3-4):235-251.
doi: 10.1016/S0040-1951(03)00134-3 |
20 |
Faulkner D R, Mitchell T M, Jensen E , et al. 2011. Scaling of fault damage zones with displacement and the implications for fault growth processes[J]. Journal of Geophysical Research: Solid Earth, 116(B5):189-216.
doi: 10.1029/2010JB007788 |
21 |
Fisher Q J, Casey M, Harris S D , et al. 2003. Fluid-flow properties of faults in sandstone: The importance of temperature history[J]. Geology, 31(11):965-968.
doi: 10.1130/G19823.1 |
22 |
Fisher Q J, Knipe R J . 1998. Fault sealing processes in siliciclastic sediments[J]. The Geological Society, 147, 117-134.
doi: 10.1144/GSL.SP.1998.147.01.08 |
23 |
Fisher Q J, Knipe R J . 2001. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf[J]. Marine and Petroleum Geology, 18(10):1063-1081.
doi: 10.1016/S0264-8172(01)00042-3 |
24 |
Fisher Q J, Knipe R J Worden R H . 2009. Microstructures of Deformed and Non-Deformed Sandstones from the North Sea: Implications for the Origins of Quartz Cement in Sandstones[J]. Quartz Cementation in Sandstones. 129-146.
doi: 10.1002/9781444304237.ch10 |
25 |
Fossen H, Bale A . 2007. Deformation bands and their influence on fluid flow[J]. AAPG Bulletin, 91(12):1685-1700.
doi: 10.1306/07300706146 |
26 | Fu Guang, Li Shichao, Yang Dexiang . 2017. A Method Forecasting Distribution Areas of Fault Transporting Oil-gas Migration and Its Application[J]. Acta Sedimentologica Sinica (in chinese), 35(3):592-599. |
27 |
Fu Xiaofei, Chen Zhe, Yan Baiquan , et al. 2013. Analysis of main controlling factors for hydrocarbon accumulation in central rift zones of the Hailar-Tamtsag Basin using a fault-caprock dual control mode[J]. Science China Earth Sciences, 56(8):1357-1370.
doi: 10.1007/s11430-013-4622-5 |
28 | Fu Xiaofei, Fang Qingde, Lu Yanfang , et al. 2005. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones[J]. Earth Science-Journal of China University of Geosciences (in chinese), 30(3):328-336. |
29 |
Fu Xiao-Fei, Meng Ling-Dong, Wang Hai-Xue , et al. 2016. Characteristics of fault zones and their control on remaining oil distribution at the fault edge: a case study from the northern Xingshugang Anticline in the Daqing Oilfield, China[J]. petroleum science, 13(3):418-433.
doi: 10.1007/s12182-016-0116-3 |
30 | Fu Xiaofei, Shang Xiaoyu, Meng Lingdong . 2013. Internal structure of fault zone and oil/gas reservior in low-porosity rock[J]. Journal of Central South University (Science and Technology) (in chinese), 44(6):2428-2438. |
31 |
Fu Xiaofei, Xiao Jianhua, Meng Xiaofei . 2014. Fault Deformation Mechanisms and Internal Structure Characteristics of Fault Zone in Pure Sandstone[J]. Journal of Jilin University (Earth Science Edition) (in chinese), 44(1):25-37.
doi: 10.13278/j.cnki.jjuese.201401103 |
32 | Fu Xiaofei, Xu Meng, Liu Shaobo , et al. 2016. Interior Structure of Fractures in The Tight Sandstone-Gypsum Mudstone (Reservoir Caprock Combinations) in the Kuqa Depression, Tarim Basin, And Its Significance in Gas Reservoir Accumulation[J]. Acta Geologica Sinica (in chinese), 90(3):521-533. |
33 | Fu Xiaofei, Xu Peng, Wei Changzhu , et al. 2012. Internal Structure of Normal Fault Zone And Conservation[J]. Earth Science Frontiers (in chinese), 19(6):200-212. |
34 | Gan Quan, Zhang Chengguang, Zhu Lei , et al. 2017. Analysis on Effects of Fracture Identification Based on Ultrasonic Imaging Logging Instrument in Oil-based Mud Condition[J]. China Energy and Environmental Protection (in chinese),, ( 4):57-63. |
35 | Gao Jun, Lu Yanfang, Tian Qingfeng . 2007. Internal Structure of Fracture Zone And Hydrocarbon Migration And Sealing[J]. Journal of Daqing Petroleum Institute, 31(2):4-7. |
36 | Gao Xiaoqiao, Zhang Da . 2015. Numerical Simulation of Structural Fractures Controlled by Reverse Fault[J]. Journal of Geomechanics (in chinese), 21(1):47-55. |
37 |
Gomila R, Arancibia G, Mitchell T M , et al. 2016. Palaeopermeability structure within fault-damage zones: A snap-shot from microfracture analyses in a strike-slip system[J]. Journal of Structural Geology, 83:103-120.
doi: 10.1016/j.jsg.2015.12.002 |
38 |
Hodson K R, Crider J G, Huntington K W . 2016. Temperature and composition of carbonate cements record early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA[J]. Tectonophysics, 690(Part A), 240-252.
doi: 10.1016/j.tecto.2016.04.032 |
39 |
Ishii E . 2016. Far-field stress dependency of the failure mode of damage-zone fractures in fault zones: Results from laboratory tests and field observations of siliceous mudstone[J]. Journal of Geophysical Research: Solid Earth, 121(1):70-91.
doi: 10.1002/2015JB012238 |
40 | Jiang Dapeng, Wang Wenyong, Gao Xiang , et al. 2016. Quantitative Analysis of The Influencing Factors of Extensional Normal Faults in Clastic Strata: Take zhujiang river basin as an example[J]. Geological Science And Technology Information (in chinese), 32(4):91-97. |
41 |
Jia Ru, Fu Xiaofei, Meng Lingdong , et al. 2017. Transformation mechanism of fault and its associated microstructures for different kinds of reservoirs[J]. Acta Petrolei Sinica (in chinese), 38(3):286-296.
doi: 10.7623/syxb201703005 |
42 |
Keulen N, Heilbronner R, Stünitz H , et al. 2007. Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoids[J]. Journal of Structural Geology, 29(8):1282-1300.
doi: 10.1016/j.jsg.2007.04.003 |
43 | Knipe R.J . 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin, 81(2):187-195. |
44 |
Knipe R.J, Jones G, Fisher Q J . 1998. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction[J]. The Geological Society, 147 (1): vii-xxi.
doi: 10.1016/S0920-4105(00)00002-4 |
45 |
Lei Guangwei, Yang Chunhe, Wang Guibin , et al. 2016. The Development Law And Mechanical Causes of Fault Influenced Zone[J]. Chinese Journal of Rock Mechanics and Engineering (in chinese), 35(2):231-241.
doi: 10.13722/j.cnki.jrme.2015.0059 |
46 | Li Yanchen, Meng Lingdong, Liu Lu , et al. 2016. Internal Structure Characteristic of Fault Zone in Clastic Formations at Heishanyao Cut Plane[J]. Science Technology and Engineering (in chinese), 16(21):172-176. |
47 | Li Yue . 2013. Discussion on Faulted Zone Structural Development Characteristics under Diverse Stresses[J]. Coal Geology of China (in chinese), 25(7):43-48. |
48 |
Li Y G, Vidale J E, Cochran E S . 2004. Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves[J]. Geophysical Research Letters, 31(12):12-16.
doi: 10.1029/2003GL019044 |
49 |
Liu Guangding, Zhang Lili, Zhu Liangyi . 2006. Seismic prospecting for oil and gas on the complex geological bodies[J]. Progress in Geophysics (in chinese), 21(3):683-686.
doi: 10.1016/S1001-8042(06)60011-0 |
50 | Liu Ruilin, Xie Fang, Xiao Chengwen , et al. 2017. Extracting fracture-vug plane porosity from electrical imaging logging data using dissection of wavelet-transform-based image[J]. Chinese J. Geophys. (in Chinese), 60(12):4945-4955, doi: 10.6038/cjg20171233. |
51 | Liu Wei, Zhu Liufang, Xu Donghui , et al. 2013. On Features and Logging Recognition Method of Structure Unit in Fracture Belt[J]. Well Logging Technology (in chinese), 37(5):495-498. |
52 | Liu Wenbin, Pan Baozhi, Zhang Lihua , et al. 2016. Research progress of logging fracture identification[J]. World Well Logging Technology (in chinese), ( 3):11-16. |
53 | Luo Qun, Huang Handong, Wang Baohua , et al. 2007. The genetic type and geological significance of low-order faults[J]. Petroleum Geology and Recovery Efficiency (in Chinese), 14(3):19-21. |
54 |
Luo Shengyuan, He Sheng, Wang Hao . 2012. Review on fault internal structure and the influence on fault sealing ability[J]. Advances in Earth Science (in Chinese), 27(2):154-164.
doi: 10.11867/j.issn.1001-8166.2012.02.0154 |
55 |
Lu L, Kashiwaya K, Koike K . 2016. Geostatistics-based regional characterization of groundwater chemistry in a sedimentary rock area with faulted setting[J]. Environmental Earth Sciences, 75(9):829.
doi: 10.1007/s12665-016-5619-0 |
56 | Lu Yanfang, Fu Guang, Zhang Yunfeng. 2002. Study on Fault Sealing [M]. Beijing: Petroleum Industry Press. |
57 | Man Anjing . 2016. The application of carbonate buried hill reservoir prediction technique in Kab oilfield[J]. Special Oil and Gas Reservoirs (in chinese), 23(3):57-60. |
58 |
Meng Chunfang, Pollard D D . 2014. Eshelby’s solution for ellipsoidal inhomogeneous inclusions with applications to compaction bands[J]. Journal of Structural Geology, 67(Part A), 1-19.
doi: 10.1016/j.jsg.2014.07.002 |
59 | Meng Lingdong, Fu Xiaofei, Lü Yanfang . 2013. Quantitive Analysis Fault Seal Influencing Factor of Extensional Normal Fault in Clastic Rock Formations[J]. Geological Science And Technology Information (in chinese), 32(2):15-28. |
60 |
Meng Lingdong, Fu Xiaofei, Wang Yachun , et al. 2014. Internal structure and sealing properties of the Volcanic fault zones in Xujiaweizi Fault Depression, Songliao Basin,China[J]. Petroleum Exploration And Development (in chinese), 41(2):2-0.
doi: 10.1016/S1876-3804(14)60019-7 |
61 |
Mollema P N, Antonellini M A . 1996. Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone[J]. Tectonophysics, 267(1-4):209-228.
doi: 10.1016/S0040-1951(96)00098-4 |
62 |
Molnár L, Tóth T M, Schubert F . 2014. Statistical characterization of brittle and semi-brittle fault rocks: a clast geometry approach[J]. Acta Geodaetica et Geophysica, 49(4):527-550.
doi: 10.1007/s40328-014-0067-3 |
63 |
O’Hara A P, Jacobi R D, Sheets H D . 2017. Predicting the width and average fracture frequency of damage zones using a partial least squares statistical analysis: Implications for fault zone development[J]. Journal of Structural Geology, 98(3):38-52.
doi: 10.1016/j.jsg.2017.03.008 |
64 |
Paola N D, Collettini C, Faulkner D R , et al. 2015. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust[J]. Tectonics, 27(4).
doi: 10.1029/2007TC002230 |
65 |
Pec M, Stünitz H, Heilbronner R . 2012. Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures[J]. Journal of Structural Geology, 38(5):200-221.
doi: 10.1016/j.jsg.2011.09.001 |
66 |
Pei Y W, Paton D A, Knipe R J , et al. 2015. A review of fault sealing behaviour and its evaluation in siliciclastic rocks[J]. Earth-Science Reviews, 150:121-138.
doi: 10.1016/j.earscirev.2015.07.011 |
67 |
Qiu H, Benzion H, Ross Z E , et al. 2017. Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array[J]. Geophysical Journal International, 209(3):1369-1388.
doi: 10.1093/gji/ggx096 |
68 | Qiu Yibo, Wang Yongshi, Liu Wei . 2010. Study on internal structure and migration in fault zones[J]. Petroleum Geology And Recovery Efficiency (in chinese), 17(4):1-3. |
69 |
Qiu Ying, Fu Xiaofei, Meng Lingdong , et al. 2014. Fault Zone Structure And Hydrocarbon Accumulation in Carbonates[J]. Journal of Jilin University (Earth Science Edition) (in chinese), 44(3):749-761.
doi: 10.13278/j.cnki.jjuese.201403104 |
70 |
Qu Haizhou, Zhang Fuxiang, Wang Zhenyu , et al. 2016. Quantitative Fracture Evaluation Method Based on Core-image Logging: A Case Study of Cretaceous Bashijiqike Formation in ks2 well area, Kuqa depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development (in chinese), 43(3):425-432.
doi: 10.1016/S1876-3804(16)30049-0 |
71 |
Rawling G C, Goodwin L B, Wilson J L , et al. 2001. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types[J]. Geology, 29(1):43-46.
doi: 10.1130/0091-7613(2001)029<0043:IAPSAH>2.0.CO;2 |
72 |
Saul Caine J, Evans J P, Forster C B . 1996. Fault zone architecture and permeability structure[J]. Geology, 24(11):1025-1028.
doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2 |
73 |
Schöpfer M P J, Childs C, Walsh J J , et al. 2016. Evolution of the internal structure of fault zones in three-dimensional numerical models of normal faults[J]. Tectonophysics, 666:158-163.
doi: 10.1016/j.tecto.2015.11.003 |
74 |
Schultz R A, Okubo C H, Fossen H . 2010. Porosity and grain size controls on compaction band formation in Jurassic Navajo Sandstone[J]. Geophysical Research Letters, 37(22):333-345.
doi: 10.1029/2010GL044909 |
75 | Shan Yixian, Lao Haigang . 2015. A Research on the Impact of Stratigraphic Composition on Fault Structure Based on Physical Simulation Experiment[J]. Petroleum Geology and Recovery Efficiency (in chinese), 22(2):24-27. |
76 | Shan Yixian, Lao Haixiang, Wang Yongshi , et al. 2016. Physical Simulation of the Influence of Lithological Differences on Fault Zone Structure[J]. Petroleum Geology & Experiment (in chinese), 38(1):108-112. |
77 | Shang Bing . 2012. Fault Zone Textures and Its Controls on 0il and Gas Accumulation-Taking Jiyang Depression as an Example [Master’s thesis]. Qingdao: China University Of Petroleum (Hua Dong). |
78 | Shi Guanghui, Li Yongquan, Wang Lu . 2013. Identified The Development of Fracture by Variable-scale Analysis and Conventional Logging Data[J]. Petroleum Instruments (in chinese), 27(1):49-51. |
79 |
Shipton Z K, Cowie P A . 2001. Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah[J]. Journal of Structural Geology, 23(12):1825-1844.
doi: 10.1016/S0191-8141(01)00035-9 |
80 |
Shipton Z K, Cowie P A . 2003. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone[J]. Journal of Structural Geology, 25(3):333-344.
doi: 10.1016/S0191-8141(02)00037-8 |
81 |
Sibson R H . 1977. Fault rocks and fault mechanisms[J]. J.geol.soc.london, 133(3):191-213.
doi: 10.1144/gsjgs.133.3.0191 |
82 |
Song Daofu, He Dengfa . 2010. Fault Facies and Their Application[J]. Advances in Earth Science (in chinese), 25(9):907-914.
doi: 10.1017/S0004972710001772 |
83 |
Stephanie P, William E, Mark Z , et al. 2002. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions[J]. Journal of Geophysical Research:Solid earth, 107(B12): ESE 9-1- ESE 9-19.
doi: 10.1029/2001JB001168 |
84 | Su Wen, Niu Chengmin, Chen Lei , et al. 2016. Quantitative Study of Fault Lateral Sealing in Strike-Slip and Extensional Zone:A Case Study from Dongying Formation of Kenli A Area[J]. Geological Science and Technology Information (in chinese), ( 3):65-70. |
85 | Suko T, Takano H . 2014. Research on Validation of the Groundwater Flow Evaluation Methods Based on the Information of Geological Environment In and Around Horonobe Underground Research Area[J]. Japan Nuclear Energy Safety Organization, Tokyo. |
86 |
Swanson M T . 2005. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones[J]. Journal of Structural Geology, 27(5):871-887.
doi: 10.1016/j.jsg.2004.11.009 |
87 |
Tang Jun, Zhang Chengguang, Xin Yi . 2017. Quantitative Fracture Evaluation Method Based on Core-image Logging: A Case Study of Cretaceous Bashijiqike Formation in ks2 Well Area, Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development (in chinese), 44(3):387-397.
doi: 10.11698/PED.2017.03.05 |
88 |
Tang Mingming, Zhang Jinliang . 2017. Facture Modeling Research of Tight Oil Reservoir Based on Fracture Propagation Inversion Model[J]. Journal of Southwest Petroleum University (Science & Technology Edition) (in chinese), 39(1):63-72.
doi: 10.11885/j.issn.1674-5086.2015.07.18.01 |
89 | Tang Xiaoming, Wei Zhoutuo, Shu Yuanda , et al. 2013. A Review on the Progress and Application of Dipole Acoustic Reflection Imaging Technology[J]. Well Logging Technology (in chinese), 37(4):333-340. |
90 |
Tondi E, Cilona A, Agosta F , et al. 2012. Growth processes, dimensional parameters and scaling relationships of two conjugate sets of compactive shear bands in porous carbonate grainstones, Favignana Island, Italy[J]. Journal of Structural Geology, 37:53-64.
doi: 10.1016/j.jsg.2012.02.003 |
91 |
Viti C . 2011. Exploring fault rocks at the nanoscale[J]. Journal of Structural Geology, 33(12):1715-1727.
doi: 10.1016/j.jsg.2011.10.005 |
92 |
Wang Jing, Dong Shuangbo, Jia Juntao , et al. 2014. Structural Feature and Its Control on Oil and Gas of Zhuangnan Fault Zone in Gubei Sag[J]. Fault-Block Oil & Gas Field (in chi8nese), 21(4):424-428.
doi: 10.1136/jech-2015-205840 |
93 | Wang Shengbo . 2013. Internal Structure And Fault Sealing of Clastic Strata in Hailar Basin[J]. Journal of Northeast Petroleum University (in chinese), 37(2) : 1-8. |
94 | Wang Shuo, Dai Junsheng, Wang Ke , et al. 2016. Analysis the Control of Fracture Development Based on Numerical Simulation[J]. Special Oil & Gas Reservoirs (in chiese), 23(1):76-80. |
95 | Wang Xiaoyan, Gao Qiang, Meng Lingdong , et al. 2015. Formation And Evolution of Internal Structure of Strike-slip Fault Zones in Low-Non-porosity Rocks[J]. Fault-Block Oil & Gas Field (in chinese), 22(6):681-685. |
96 | Wang Xin, Zhang Jingfa, Jiang Wenliang , et al. 2016. Transverse Structures Features Of Different Depths Derived From Bouguer Gravity Anomalies in The Southern Segment Of Tan-Lu Fault Zone[J]. Seismology And Geology (in chinese), 38(2):370-385. |
97 |
Wibberley C A J, Shimamoto T . 2003. Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan[J]. Journal of Structural Geology, 25(1):59-78.
doi: 10.1016/S0191-8141(02)00014-7 |
98 | Wu Kongyou, Li Jiyan, Cui Shiling , et al. 2011. Diagenetic sealing characteristics of faulting zone and its application[J]. Journal of Geomechanics (in chinese), 17(4):350-360. |
99 |
Wu Yuming, Lan Hengxing, Gao Xing , et al. 2016. The relationship between the volume density of cracks and acoustic properties of the shale core samples from Fulin[J]. Chinese J. Geophys. (in Chinese), 59(10):3891-3900, doi: 10.6038/cjg20161032.
doi: 10.6038/cjg20161032 |
100 | Wu Zhiping, Chen Wei, Xue Ya . 2010. Structure Characteristics of Faulting Zone and Its Ability in Trusporting And Sealing Oil and Gas[J]. Acta Geological sinica (in chinese), 84(4):570-578. |
101 | Xu Honngwei, Wang Weijun . 2014. The spectral element method of the vertical and inclined fault trapping wave and its wave field characteristics are compared.[J]. Earthquake, 34(3):27-39. |
102 | Yang Xue, Wang Ying, Li Wancai . 2013. Identify Fssure with Conventional Logging Information[J]. Jilin Geology (in chinese), 32(1):102-105. |
103 | Yao Hongsheng, Jiang Yongping, Liu Jin , et al. 2015. Dominant Description of Small and Micro Faults of Complex Fault block Oilfields[J]. Journal of Northwest University (Natural Science Edition) (in chinese), 45(3):445-452. |
104 |
Yao Zhixiang, Wang Chunyong, Pei Zhenglin . 2007. Finite Difference Numerical Simulation of Trapped Waves in the Kunlun Fault Zone[J]. Chinese Journal of Geophysics (in chinese), 50(3):760-769, doi: 10.3321/j.issn:0001-5733.2007.03.015.
doi: 10.1002/cjg2.1081 |
105 | Zhang Jibiao . 2012. Research on the development rules of lower-order faults and structure [Ph.D. thesis]. Qingdao:China university of petroleum (huadong). |
106 | Zhang Yunfeng, Liu Peipei, Qi Qingpeng , et al. 2012. Study on fault associated crack development characteristics and simulation experiment about the buried hill reservoir in the Beier Sag, Hailer Basin[J]. Chinese Journal of Geology (in chinese), 47(4):1176-1187. |
107 | Zhang Zhongqiao, Gao Jinghua, Wu Kui , et al. 2017. Identification of hidden strike-slip fault based on high wavenumber curvature attribute-Taking lüda area in liaodong bay depression as example[J]. Progress in geophysics (in chinese), 32(6):2602-2607, doi: 10.6038/pg20170642. |
108 |
Zhu T, Zhou J, Wang H . 2017. Localization and characterization of the Zhangdian-Renhe fault zone in Zibo city, Shandong province, China, using electrical resistivity tomography (ERT)[J]. Journal of Applied Geophysics, 136:343-352.
doi: 10.1016/j.jappgeo.2016.11.016 |
109 |
蔡申阳, 尹宏伟, 李长圣 , 等. 2016. 基于离散元数值模拟的应变分析和裂缝预测技术[J]. 高校地质学报, 22(1):183-193.
doi: 10.16108/j.issn1006-7493.2015235 |
110 | 陈伟 . 2011. 含油气盆地断裂带内部结构特征及其与油气运聚的关系[博士论文]. 青岛: 中国石油大学(华东). |
111 | 丁拼搏, 狄帮让, 魏建新 , 等. 2017. 不同尺度裂缝对弹性波速度和各向异性影响的实验研究[J]. 地球物理学报, 60(4):1538-1546, doi: 10.6038/cjg20170426. |
112 |
樊计昌, 刘明军 . 2007. 确定断裂带内部结构和物性参数的一种方法[J]. 石油地球物理勘探, 42(2):164-169.
doi: 10.3321/j.issn:1000-7210.2007.02.008 |
113 |
樊建明, 屈雪峰, 王冲 , 等. 2016. 鄂尔多斯盆地致密储集层天然裂缝分布特征及有效裂缝预测新方法[J]. 石油勘探与开发, 43(5):740-748.
doi: 10.11698/PED.2016.05.09 |
114 |
付广, 李世朝, 杨德相 . 2017. 断裂输导油气运移形式分布区预测方法及其应用[J]. 沉积学报, 35(3):592-599.
doi: 10.14027/j.cnki.cjxb.2017.03.016 |
115 |
付晓飞, 方德庆, 吕延防 , 等. 2005. 从断裂带内部结构出发评价断层垂向封闭性的方法[J]. 地球科学-中国地质大学学报, 30(3):328-336.
doi: 10.3321/j.issn:1000-2383.2005.03.008 |
116 | 付晓飞, 尚小钰, 孟令东 . 2013. 低孔隙岩石中断裂带内部结构及与油气成藏[J]. 中南大学学报(自然科学版), 44(6):2428-2438. |
117 | 付晓飞, 肖建华, 孟令东 . 2014. 断裂在纯净砂岩中的变形机制及断裂带内部结构[J]. 吉林大学学报(地球科学版), 44(1):25-37. |
118 | 付晓飞, 徐萌, 柳少波 , 等. 2016. 塔里木盆地库车坳陷致密砂岩-膏泥岩储盖组合断裂带内部结构及与天然气成藏关系[J]. 地质学报, 90(3):521-533. |
119 | 付晓飞, 许鹏, 魏长柱 , 等. 2012. 张性断裂带内部结构特征及油气运移和保存研究[J]. 地学前缘, 19(6):200-212. |
120 |
甘泉, 章成广, 朱雷 , 等. 2017. 油基泥浆下超声成像测井仪裂缝识别效果分析[J]. 中州煤炭, ( 4):57-63.
doi: 10.19389/j.cnki.1003-0506.2017.04.012 |
121 | 高孝巧, 张达 . 2015. 逆断层控制构造裂缝发育的力学机制模拟[J]. 地质力学学报, 21(1):47-55. |
122 |
贾茹, 付晓飞, 孟令东 , 等. 2017. 断裂及其伴生微构造对不同类型储层的改造机理[J]. 石油学报, 38(3):286-296.
doi: 10.7623/syxb201703005 |
123 | 姜大朋, 王文勇, 高翔 , 等. 2016. 从内部结构出发探讨断裂控藏机理及模式:以珠江口盆地珠一坳陷为例[J]. 地质科技情报, ( 4):91-97. |
124 | 雷光伟, 杨春和, 王贵宾 , 等. 2016. 断层影响带的发育规律及其力学成因[J]. 岩石力学与工程学报, 35(2):231-241. |
125 | 李颜辰, 孟令东, 刘露 , 等. 2016. 黑山窑村剖面碎屑岩地层断裂带内部结构特征[J]. 科学技术与工程, 16(21):172-176. |
126 |
李月 . 2013. 不同应力条件下断裂带结构发育特征探讨[J]. 中国煤炭地质, 25(7):5-7, 47.
doi: 10.3969/j.issn.1674-1803.2013.07.02 |
127 |
刘光鼎, 张丽莉, 祝靓谊 . 2006. 试论复杂地质体的油气地震勘探[J]. 地球物理学进展, 21(3):683-686.
doi: 10.3969/j.issn.1004-2903.2006.03.001 |
128 |
刘瑞林, 谢芳, 肖承文 , 等. 2017. 基于小波变换图像分割技术的电成像测井资料裂缝、孔洞面孔率提取方法[J]. 地球物理学报, 60(12):4945-4955, doi: 10.6038/cjg20171233.
doi: 10.6038/cjg20171233 |
129 | 刘文斌, 潘保芝, 张丽华 , 等. 2016. 测井裂缝识别研究进展[J]. 国外测井技术, ( 3):11-16. |
130 |
刘伟, 朱留方, 许东晖 , 等. 2013. 断裂带结构单元特征及其测井识别方法研究[J]. 测井技术, 37(5):495-498.
doi: 10.3969/j.issn.1004-1338.2013.05.008 |
131 |
罗群, 黄捍东, 王保华 , 等. 2007. 低序级断层的成因类型特征与地质意义[J]. 油气地质与采收率, 14(3):19-21, 25.
doi: 10.3969/j.issn.1009-9603.2007.03.006 |
132 |
罗胜元, 何生, 王浩 . 2012. 断层内部结构及其对封闭性的影响[J]. 地球科学进展, 27(2):154-164, doi: 10.11867/j.issn.1001-8166.2012.02.0154.
doi: 10.11867/j.issn.1001-8166.2012.02.0154 |
133 |
满安静 . 2016. 碳酸盐岩潜山储层预测技术在Kab油田的应用[J]. 特种油气藏, 23(3):57-60.
doi: 10.3969/j.issn.1006-6535.2016.03.013 |
134 | 孟令东, 付晓飞, 吕延防 . 2013. 碎屑岩层系中张性正断层封闭性影响因素的定量分析[J]. 地质科技情报, 32(2):15-28. |
135 |
孟令东, 付晓飞, 王雅春 , 等. 2014. 徐家围子断陷火山岩断层带内部结构与封闭性[J]. 石油勘探与开发, 41(2):2-0.
doi: 10.11698/PED.2014.02.03 |
136 |
邱贻博, 王永诗, 刘伟 . 2010. 断裂带内部结构及其输导作用[J]. 油气地质与采收率, 17(4):1-3.
doi: 10.3969/j.issn.1009-9603.2010.04.001 |
137 |
郄莹, 付晓飞, 孟令东 , 等. 2014. 碳酸盐岩内断裂带结构及其与油气成藏[J]. 吉林大学学报(地球科学版), 44(3):749-761.
doi: 10.13278/j.cnki.jjuese.201403104 |
138 |
屈海洲, 张福祥, 王振宇 , 等. 2016. 基于岩心-电成像测井的裂缝定量表征方法——以库车坳陷ks2区块白垩系巴什基奇克组砂岩为例[J]. 石油勘探与开发, 43(3):425-432.
doi: 10.11698/PED.2016.03.13 |
139 |
单亦先, 劳海港 . 2015. 基于物理模拟实验研究地层组成对断层结构的影响[J]. 油气地质与采收率, 22(2):24-27.
doi: 10.3969/j.issn.1009-9603.2015.02.004 |
140 |
单亦先, 劳海港, 王永诗 , 等. 2016. 岩性差异变化对断层带结构影响的物理模拟[J]. 石油实验地质, 38(1):108-112.
doi: 10.11781/sysydz201601108 |
141 | 尚冰 . 2012. 断层结构及其对油气成藏的控制作用-以济阳坳陷为例[硕士论文]. 青岛: 中国石油大学(华东). |
142 |
师光辉, 李永权, 王鲁 . 2013. 结合变尺度分析方法和常规测井资料识别裂缝的发育[J]. 石油仪器, 27(1):49-51.
doi: 10.3969/j.issn.1004-9134.2013.01.018 |
143 |
宋到福, 何登发 . 2010. 断层相的概念及应用[J]. 地球科学进展, 25(9): 907-914, dio: 10.11867/j.issn.1001-8166. 2010. 09. 0907.
doi: 10.11867/j.issn.1001-8166.2010.09.0907 |
144 | 宿雯, 牛成民, 陈磊 , 等. 2016. 走滑-伸展复合区断层侧封定量研究:以垦利A区东营组为例[J]. 地质科技情报, ( 3):65-70. |
145 | 唐军, 章成广, 信毅 . 2017. 油基钻井液条件下裂缝声波测井评价方法-以塔里木盆地库车坳陷克深地区致密砂岩储集层为例[J]. 石油勘探与开发, 44(3):389-397. |
146 |
唐明明, 张金亮 . 2017. 基于随机扩展方法的致密油储层裂缝建模研究[J]. 西南石油大学学报(自然科学版), 39(1):63-72.
doi: 10.11885/j.issn.1674-5086.2015.07.18.01 |
147 |
唐晓明, 魏周拓, 苏远大 , 等. 2013. 偶极横波远探测测井技术进展及其应用[J]. 测井技术, 37(4):333-340.
doi: 10.3969/j.issn.1004-1338.2013.04.001 |
148 |
王晶, 董双波, 贾军涛 , 等. 2014. 孤北洼陷桩南断裂带构造特征及其对油气的控制[J]. 断块油气田, 21(4):424-428.
doi: 10.6056/dkyqt201404005 |
149 |
王盛波 . 2013. 海拉尔盆地碎屑岩地层断裂带内部结构及断层封闭性[J]. 东北石油大学学报, 37(2):1-8.
doi: 10.3969/j.issn.2095-4107.2013.02.001 |
150 |
王硕, 戴俊生, 王珂 , 等. 2016. 基于数值模拟分析构造作用对裂缝发育的控制[J]. 特种油气藏, 23(1):76-80.
doi: 10.3969/j.issn.1006-6535.2016.01.017 |
151 |
王孝彦, 高强, 孟令东 , 等. 2015. 低-非孔隙岩石中走滑断裂带内部结构的形成演化[J]. 断块油气田, 22(6):681-685.
doi: 10.6056/dkyqt201506001 |
152 |
王鑫, 张景发, 姜文亮 , 等. 2016. 郯庐断裂带南段重力异常及不同深度的横向构造特征[J]. 地震地质, 38(2):370-385.
doi: 10.3969/j.issn.0253-4967.2016.02.011 |
153 |
吴孔友, 李继岩, 崔世凌 , 等. 2011. 断层成岩封闭及其应用[J]. 地质力学学报, 17(4):350-360.
doi: 10.3969/j.issn.1006-6616.2011.04.005 |
154 |
伍宇明, 兰恒星, 高星 , 等. 2016. 涪陵地区井下页岩岩芯裂缝体密度与声学性质关系实验研究[J]. 地球物理学报, 59(10):3891-3900, doi: 10.6038/cjg20161032.
doi: 10.6038/cjg20161032 |
155 | 吴智平, 陈伟, 薛雁 . 2010. 断裂带的结构特征及其对油气的输导和封堵性[J]. 地质学报, 84(4):570-578. |
156 |
徐洪伟, 王伟君 . 2014. 垂直和倾斜断层围陷波的谱元法数值模拟及其波场特征对比[J]. 地震, 34(3):27-39.
doi: 10.3969/j.issn.1000-3274.2014.03.003 |
157 | 杨雪, 王莹, 李万才 . 2013. 应用常规测井资料进行裂缝识别[J]. 吉林地质, 32(1):102-105. |
158 |
姚红生, 蒋永平, 刘金 , 等. 2015. 复杂断块油田小微断层的显性描述[J]. 西北大学学报:自然科学版, 45(3):445-452.
doi: 10.16152/j.cnki.xdxbzr.2015-03-019 |
159 |
姚志祥, 王椿镛, 裴正林 . 2007. 昆仑山断裂带围陷波的有限差分数值模拟解释[J]. 地球物理学报, 50(3):760-769, doi: 10.3321/j.issn:0001-5733.2007.03.015.
doi: 10.3321/j.issn:0001-5733.2007.03.015 |
160 |
张继标 . 2012. 真武断裂带低级序断层及裂缝发育规律研究[博士论文]. 青岛: 中国石油大学(华东).
doi: 10.7666/d.y2070644 |
161 | 张云峰, 刘佩佩, 齐庆鹏 , 等. 2012. 海拉尔盆地贝尔凹陷基岩断层相关裂缝发育特征及模拟实验研究[J]. 地质科学, 47(4):1176-1187. |
162 | 张云峰, 赵旭光, 王宇 , 等. 2010. 正断层伴生裂缝物理模拟实验研究[J]. 科学技术与工程, 10(36):8975-8979. |
163 | 张中巧, 高京华, 吴奎 , 等. 2017. 基于高波数曲率属性的隐性走滑断层识别——以辽东湾坳陷旅大构造区为例[J]. 地球物理学进展, 32(6):2602-2607, doi: 10.6038/pg20170642. |
164 | 赵为永, 陈宏民 . 2008. 常规测井与成像测井结合进行裂缝识别方法研究[J]. 青海石油, ( 2):1-4. |
[1] | 李会超,张莹. 数据驱动的三维磁流体力学背景太阳风模拟研究进展[J]. 地球物理学进展, 2019, 34(4): 1303-1313. |
[2] | 曾胜强,刘争平,奉建军,肖薄,黄云,李京京. 隧道反射地震超前预报波场分离方法的数值模拟研究[J]. 地球物理学进展, 2019, 34(2): 817-825. |
[3] | 佘松盛,鹿琪,刘四新,李晔,王焱,张宫博. 基于多相流模型和探地雷达正演模拟的LNAPLs探测研究[J]. 地球物理学进展, 2019, 34(1): 371-378. |
[4] | 王敏玲,王洪华. 探地雷达波动方程数值模拟方法研究进展综述[J]. 地球物理学进展, 2018, 33(5): 1974-1984. |
[5] | 王振山,魏东平. 全球板块运动三联点形成与演化规律的研究进展[J]. 地球物理学进展, 2018, 33(5): 1834-1843. |
[6] | 金震,李山有,蔡辉腾,李培,李海艳,徐嘉隽. 谱白化叠加方法在气枪信号检测中的应用[J]. 地球物理学进展, 2018, 33(4): 1358-1365. |
[7] | 王晓畅,胡松,孔强夫. 双侧向测井响应计算洞穴充填物电阻率方法[J]. 地球物理学进展, 2018, 33(3): 1155-1160. |
[8] | 郝晋荣,李毛飞,廖昱翔,樊程,胡代明. 直流电阻率法高阻管道漏点位置的探测与分析[J]. 地球物理学进展, 2018, 33(2): 803-807. |
[9] | 蒋林城,肖宏跃,丁尚见,贾毅,吴强. 跨孔电阻率法装置灵敏度分析及分辨率讨论[J]. 地球物理学进展, 2018, 33(2): 815-822. |
[10] | 陈卫东,付丹红,苗世光,周海,崔方. 气溶胶污染对夏季降水精细数值预报的影响研究[J]. 地球物理学进展, 2018, 33(1): 10-18. |
[11] | 孙婧,王德利,王通,张延保,王铁兴,田密. 基于双程波动方程的多次波照明分析方法研究[J]. 地球物理学进展, 2018, 33(1): 243-249. |
[12] | 皮娇龙,滕吉文,丁志峰,杨辉. 青藏高原东北缘六盘山构造带及邻域的动力学响应数值模拟[J]. 地球物理学进展, 2018, 33(1): 64-73. |
[13] | 孙玉军,胡道功,张怀,范桃园,张耀玲,李冰,石耀霖. 青藏高原东北缘岩石圈变形方式的动力学模拟研究[J]. 地球物理学进展, 2017, 32(6): 2383-2393. |
[14] | 胡松,郭洪波,王昌学,孔强夫. 水平井随钻电阻率与双侧向响应差异影响因素分析[J]. 地球物理学进展, 2017, 32(5): 1999-2008. |
[15] | 李江,李庆春,张向辉. 黄陵矿区2号煤层构造应力场分析[J]. 地球物理学进展, 2017, 32(5): 2009-2013. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||