地球物理学报 ›› 2021, Vol. 36 ›› Issue (5): 1822–1833.doi: 10.6038/pg2021EE0227

• 固体地球物理及空间物理学(大气、行星、地球动力学、重磁电及地震学、地热学) • 上一篇    下一篇

利用PS-InSAR研究合肥地区活动构造变形

董雅竹, 谭颖, 张朋辉, 查显杰*   

  1. 中国科学技术大学地球与空间科学学院,合肥 230026
  • 收稿日期:2020-10-10 修回日期:2021-05-13 发布日期:2021-11-11
  • 通讯作者: * 查显杰,男,1975年生,博士,副教授,主要从事InSAR理论及应用研究.E-mail: zhaxj@ustc.edu.cn
  • 作者简介:董雅竹,女,1995年生,硕士研究生,主要从事InSAR形变研究.E-mail:dongyz@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金项目(41374037)和蒙城国家地球物理野外观测站开放基金(MENGO-202001)联合资助.

Using PS-InSAR to study active tectonic deformation in Hefei area

DONG YaZhu, TAN Ying, ZHANG PengHui, ZHA XianJie*   

  • Received:2020-10-10 Revised:2021-05-13 Published:2021-11-11

摘要: 合肥地区位于我国大陆中部,其内展布有多条活动断裂,包括著名的郯庐断裂带.由于该地区大部分断裂是隐伏的,其分布位置、活动特性及构造仍存在争议.本文利用PS-InSAR技术处理了合肥地区2017年10月至2019年8月共52景Sentinel-1A卫星升轨SAR数据,获取了该区域的平均形变速率图.我们发现池河—太湖断裂、桥头集—东关断裂和肥中断裂构成的三角形块体内存在与断层活动相关的地壳InSAR形变.利用贝叶斯方法,本文分别对三条断裂附近区域的形变进行了反演.结果显示:池河—太湖断裂的走向为北北东,倾向南东,运动特性以右旋走滑为主兼具少许拉张分量;桥头集—东关断裂的走向为北西,倾向北东,活动特性以右旋走滑为主兼具部分逆冲分量;肥中断裂为一条走向近东西、倾向向南的左旋走滑兼具逆冲运动的断裂.综合三条断裂的运动特征,我们推断该三角形块体受到郯庐断裂的活动和北西方向挤压作用的综合影响,整体有轻微旋转趋势.这可能是该地区小震聚集的原因,应引起足够的重视.

关键词: PS-InSAR, 断裂构造, 地表形变, 合肥地区

Abstract: The Hefei area is located in the central part of mainland China, with many active faults, including the Tanlu fault system. Since most of the faults in this area are blind, their distribution, activity characteristics and structure are still controversial. This paper used PS-InSAR technology to process a total of 52 Sentinel-1A satellite ascending SAR data from October 2017 to August 2019, and obtain the average deformation velocity map of Hefei area. We found that there are crustal InSAR deformations related to fault activity in the triangular block composed of Chihe-Taihu fault, Qiaotouji-Dongguan fault and Feizhong fault. Based on the Bayesian method, the deformations of three faults were inversed. The results show that the Chihe-Taihu fault is an active fault with a strike of NNE and a dip of SE. Its motion characteristic is mainly right-lateral strike-slip with a small extension component. The tectonic characteristic of the Qiaotouji-Dongguan fault is that the strike is NW and the dip is NE. The movement characteristic is mainly right-lateral strike-slip with small thrust component. The Feizhong fault is a left-lateral strike-slip thrust fault with a strike of EW and a dip of South. Combining the tectonic and motion characteristics of the three faults, we inferred that the triangular block was affected by the activities of the Tanlu fault and the extrusion force from the north-west direction. The whole block has a slight rotation trend, which may be the reason for the occurrence of small earthquakes in this area. And the triangular block area should attract enough attention.

Key words: School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

中图分类号: 

  • P228
[1] Bagnardi M, Hooper A.2018. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach[J]. Geochemistry Geophysics Geosystems, 19(7): 2194-2221, doi: 10.1029/2018GC007585.
[2] Blasco D, Manuel J, Foumelis M, et al.2019. Measuring urban subsidence in the Rome Metropolitan area (Italy) with Sentinel-1 SNAP-StaMPS persistent scatterer interferometry[J]. Remote Sensing, 11(2), doi: 10.3390/rs11020129.
[3] Cao Zhilei, Zhou Qiong, Bao Yujing, et al.2018. Long-term variation of fault deformation rate in the central-south segment of the Tanlu fracture zone[J]. Recent Developments in World Seismology (in Chinese), (12): 22-28, doi: 10.3969/j.issn.0253-4975.2018.12.005.
[4] Cao Zhongxiang.2007. Cretaceous extensional tectonic framework of the Hefei basin, eastern China[J]. Journal of Nanjing Unicersity (Natural Sciences) (in Chinese), 43(5): 526-534, doi: 10.3321/j.issn:0469-5097.2007.05.011.
[5] Ferretti A, Prati C, Rocca F.2001. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20, doi: 10.1109/IGARSS.1999.772008.
[6] Foumelis M, Blasco J M D, Desnos Y L, et al.2018. ESA SNAP-StaMPS integrated processing for Sentinel-1 persistent scatterer interferometry[J]. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 1364-1367, doi: 10.13140/RG.2.2.25803.90405.
[7] Hooper A, Segall P, Zebker H.2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research: Solid Earth, 112: B07407, doi: 10.1029/2006JB004763, 2007.
[8] Hu Wangshui, Lü Bingquan, Guan Dayong, et al.2003. Characteristics of Tanlu fault zone and development of Mesozoic and Cenozoic basins along it[J]. Maeine Geology and Quaternary Geology (in Chinese), 23(4): 51-58.
[9] Li Layue, Li Yujiang, Zhang Fengshuang, et al.2020. Fault blocking characteristics and seismic hazard analysis in the middle and southern segments of the Tanlu Fault Zone[J]. Acta Geologica Sinica (in Chinese), 94(2): 467-479, doi: 10.3969/j.issn.0001-5717.2020.02.008.
[10] Li Yanchuan, Shan Xinjian, Song Xiaogang, et al.2016. Fault locking and slip rate deficit on the middle and southern segment of the Tancheng-Lujiang fault inverted from GPS data[J]. Chinese Journal of Geophysics (in Chinese), 59(11): 4022-4034, doi: 10.6038/cjg20161108.
[11] Li Yunping, Wu Shiguo, Han Wengong, et al.2006. A study on geophysical features of deep structures of the Hefei Basin and the southern Tan-Lu fault zone. Chinese [J]. Geophys (in Chinese), 49(1): 115-122, doi: 10.3321/j.issn:0001-5733.2006.01.016.
[12] Liu Xiaoxia, Jiang Zaisen, Wu Yanqiang.2012. Motion and deformation state of the Tancheng-Lujiang fault zone derived from GPS data[J]. Earthquake (in Chinese), 32(4): 1-10, doi: 10.3969/j.issn.1000-3274.2012.04.001.
[13] Okada Y.1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154.
[14] Qin Jingjing, Shi Jihu, Zhang Yi, et al.2018. Structural characteristics of the Wuhe-Hefei fault on the Hefei segment of the Tanlu fault zone[J]. Chinese J. Geophys (in Chinese), 61(11): 159-169, doi: 10.6038/cjg2018M0002.
[15] Tang Jiafu, Li Huaikun, Lou Qing.2003. Progress in the study of the southern segment of the Tanlu fault and a discussion of the nature of the fault[J]. Geological Bulletin of China (in Chinese), 22(6): 48-58, doi: 10.3969/j.issn.1671-2552.2003.06.008.
[16] Tang Jiafu, Xu Wei.2002. No huge strike slip in the southern sector of the Tancheng-Lujiang fault-tectonic evidence from Anhui province[J]. Geological Review (in Chinese), 48(5): 449-456, doi: 10.3321/j.issn:0371-5736.2002.05.001.
[17] Wan Tianfeng, Zhu Hong, Zhao Lei, et al.1996. Formation and evolution of Tancheng-Lujing fault zone: a review[J]. Geosience (in Chinese), 10(2): 159-168.
[18] Wang Lan.2005. Some new understandings of Tanlu and Lianhuang great fault[J]. Progress in Exploration Geophysics (in Chinese), 28(5): 368-372.
[19] Wang Xiaofeng.2000. Tanlu fault zone[M]. Beijing: Geological Publisher.
[20] Wang Xueying, Li Jie, Zheng Haigang, et al.2015. Research on characteristics of fault leveling deformation in Anhui and its surrounding area[J]. Journal of Institute of Disaster Prevention (in Chinese), 17(2): 25-30, doi: 10.3969/j.issn.1673-8047.2015.02.004.
[21] Xu Jiawei, Ma Guofeng.1992. Review of ten years (1981-1991) of research on the Tancheng-Lujiang fault zone[J]. Geological Review (in Chinese), 38(4): 316-324, doi: 10.16509/j.georeview.1992.04.004.
[22] Yang Kesheng, Hu Ping, Dang Xiaochun.2009. Distribution and activity of Tanlu fault belt in Cenozoic shown by seismic data[J]. Earth Science Frontiers (in Chinese), 16(4): 242-253.
[23] Yang Minghui, Wang Simin, Zheng Xiaofeng, et al.2009. Aeromagnetic anomalies characteristics and tectonic subareas of southern north China craton and adjacent regions[J]. Geological Review (in Chinese), 55(6): 862-872, doi: 10.3321/j.issn:0371-5736.2009.06.010.
[24] Zhai Hongtao, Zhang Yi, Sun Baoting.2006. Analysis of seismic activity and seismogeological structure background in Hefei area[J]. South China Journal of Seismology (in Chinese), 26(3): 68-76, doi: 10.3969/j.issn.1001-8662.2006.03.009.
[25] Zhang Yueqiao, Dong Shuwen.2008. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China: Advances and new under standing[J]. Geological Bulletin of China (in Chinese), 27(9): 1371-1390.
[26] Zhao B, Huang Y, Zhang C, et al.2015. Crustal deformation on the Chinese mainland during 1998-2014 based on GPS data[J]. Geodesy and Geodynamics (in Chinese), 6(1): 7-15.
[27] Zhao Weidong, Zheng Yong, Zhang Haonan, et al.2019. Remote sensing interpretation and spatial distribution characteristics of the Anhui segment of Tanlu fault zone based on multi-source data[J]. Remote Sensing for land and resources (in Chinese), 31(4): 79-87, doi: 10.6046/gtzyyg.2019.04.11.
[28] Zheng Yingping, Fang Lianghao, Shu Peng, et al.2017. Characteristics analysis of remote sensing on the Mingguang-Lujiang segment of the Tancheng-Lujiang fault zone[J]. Earthquake Research in China (in Chinese), 33(1): 129-140.
[29] Zheng Yingping, Yang Xiaoping, Shu Peng, et al.2020. Study of the latest activity of Wuyunshan-Hefei fault in Hefei Basin, the western branch of the Tanlu fault zone[J]. Seismology and Geology (in Chinese), 42(1): 50-64, doi: 10.3969/j.issn.0253-4967.2020.01.004.
[30] 曹志磊, 周琼, 鲍玉静, 等. 2018. 郯庐断裂带中南段断层形变累积率长期变化特征[J]. 国际地震动态,(12): 22-28.
[31] 曹忠祥. 2007. 合肥盆地白垩纪伸展构造格局[J]. 南京大学学报:自然科学版,43(5): 526-534.
[32] 胡望水, 吕炳全, 官大勇,等. 2003. 郯庐断裂带及其周缘中新生代盆地发育特征[J]. 海洋地质与第四纪地质, 23(4): 51-58.
[33] 李彦川, 单新建, 宋小刚, 等. 2016. GPS 揭示的郯庐断裂带中南段闭锁及滑动亏损[J]. 地球物理学报, 59(11): 4022-4034, doi: 10.6038/cjg20161108.
[34] 李腊月, 李玉江, 张风霜, 等. 2020. 郯庐断裂带中南段闭锁特征与地震危险性分析[J]. 地质学报, 94(2): 467-479.
[35] 李云平, 吴时国, 韩文功,等. 2006. 合肥盆地和郯庐断裂带南段深部地球物理特征研究[J]. 地球物理学报, 49(1): 115-122, doi: 10.3321/j.issn:0001-5733.2006.01.016.
[36] 刘晓霞, 江在森, 武艳强. 2012. 利用GPS 资料研究郯庐带现今运动及变形状态[J]. 地震, 32(4): 1-10.
[37] 秦晶晶, 石金虎, 张毅, 等. 2018. 郯庐断裂带合肥段五河—合肥断裂构造特征[J]. 地球物理学报, 61(11): 4475-4485,doi: 10.6038/cjg2018M0002.
[38] 汤加富, 许卫. 2002. 郯庐断裂带南段并无巨大平移-来自安徽境内的证据[J]. 地质论评, 48(5): 449-456.
[39] 汤加富, 李怀坤, 娄清. 2003. 郯庐断裂南段研究进展与断裂性质讨论[J]. 地质通报, 22(6): 426-436.
[40] 万天丰, 朱鸿, 赵磊, 等. 1996. 郯庐断裂带的形成与演化:综述[J]. 现代地质, 10(2): 159-168.
[41] 王岚. 2005. 对郯庐及连黄大断裂的几点新认识[J]. 勘探地球物理进展, 028(005): 368-372.
[42] 王小凤. 2000. 郯庐断裂带[M]. 北京: 地质出版社.
[43] 王雪莹, 李杰, 郑海刚, 等. 2015. 安徽及周边地区断层水准变化特征研究[J]. 防灾科技学院学报, 17(2): 25-27.
[44] 徐嘉炜, 马国锋. 1992. 郯庐断裂带研究的十年回顾[J]. 地质论评, 38(4): 316-324.
[45] 杨克绳, 胡平, 党晓春. 2009. 从地震信息看新生代郯庐断裂带的展布与活动[J]. 地学前缘, 16(4): 242-253.
[46] 杨明慧, 王嗣敏, 郑晓凤, 等. 2009. 华北克拉通南部及邻区航磁异常特征与构造分区[J]. 地质论评, 55(6): 862-872.
[47] 翟洪涛, 张毅, 孙宝廷. 2006. 合肥地区地震活动性及地震地质构造背景分析[J]. 华南地震, 026(3): 68-76.
[48] 张岳桥, 董树文. 2008. 郯庐断裂带中生代构造演化史: 进展与新认识[J]. 地质通报, 27(9): 1371-1390.
[49] 赵卫东, 郑勇, 章浩南, 等. 2019. 基于多源数据的郯庐断裂带安徽段遥感解译及其空间分布特征[J]. 国土资源遥感, 31(4): 79-87.
[50] 郑颖平, 方良好, 疏鹏, 等. 2017. 郯庐断裂带明光-庐江段遥感特征分析[J]. 中国地震, 33(1): 129-140.
[51] 郑颖平, 杨晓平, 疏鹏, 等. 2020. 合肥盆地中郯庐断裂带西支乌云山-合肥断裂最新活动特征[J]. 地震地质, 42(1): 50-64.
[1] 宋闯,许才军,温扬茂,易磊,徐文. 利用高频GPS资料研究2016年新西兰凯库拉地震的地表形变及预警震级[J]. 地球物理学报, 2017, 60(9): 3396-3405.
[2] 徐小波,屈春燕,单新建,张桂芳,马超,庾露,孟秀军. CR-InSAR与PS-InSAR联合解算方法及在西秦岭断裂中段缓慢变形研究中的应用[J]. 地球物理学报, 2016, 59(8): 2796-2805.
[3] 王谦身,滕吉文,张永谦,文武,华昌才. 中秦岭北侧特异重力场及其探榷[J]. 地球物理学报, 2013, 56(3): 792-798.
[4] 王谦身,滕吉文,张永谦,杨辉,赵彬彬,胡国泽. 中秦岭地带重力异常特征及地壳结构的探榷[J]. 地球物理学报, 2013, 56(12): 3999-4008.
[5] 许文斌,李志伟,丁晓利,汪长城,冯光财. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J]. 地球物理学报, 2012, 55(2): 452-461.
[6] 陈强,刘国祥,胡植庆,丁晓利,杨莹辉. GPS与PS-InSAR联网监测的台湾屏东地区三维地表形变场[J]. 地球物理学报, 2012, (10): 3248-3258.
[7] 刘云华,屈春燕,单新建. 基于SAR影像偏移量获取汶川地震二维形变场[J]. 地球物理学报, 2012, (10): 3296-3306.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!