地球物理学报 ›› 2021, Vol. 36 ›› Issue (5): 1834–1841.doi: 10.6038/pg2021EE0390

• 固体地球物理及空间物理学(大气、行星、地球动力学、重磁电及地震学、地热学) • 上一篇    下一篇

含水量和含盐量对粉质黏土热导率影响的试验研究

段钊1,2, 谭轩1,2, 孙强1,2,*, 闫旭升1,2   

  1. 1.西安科技大学地质与环境学院,西安 710054;
    2.陕西省煤炭绿色开发地质保障重点实验室,西安 710054
  • 收稿日期:2020-11-30 修回日期:2021-07-18 发布日期:2021-11-11
  • 通讯作者: * 孙强,男, 1981年生,教授,研究方向为地质工程试验.E-mail:sunqiang04@126.com
  • 作者简介:段钊,男,1985年生,副教授,研究方向为黄土力学行为及滑坡机理.E-mail:duanzhao@xust.edu.cn
  • 基金资助:
    国家自然科学基金(42177155,41972288,41790442); 陕西省自然科学基础研究计划(2017JQ4020)资助.

Experimental study on the influence of water content and salt content on thermal conductivity of silty clay

DUAN Zhao1,2, TAN Xuan1,2, SUN Qiang1,2,*, YAN XuSheng1,2   

  1. 1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054,China;;
    2. Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054,China;
  • Received:2020-11-30 Revised:2021-07-18 Published:2021-11-11

摘要: 土壤传热性能作为地热资源开发的基础研究课题,近年来已经成为能源、工程、地球科学和地质学等领域的研究热点.然而有关盐渍黄土的热导率研究却很少被发表.针对关中地区地热资源开发的迫切需要,本研究借助瞬态平面热源法对黄土的热导率做了测量,得到了不同含水量(8%,10%,12%,14%,16%,18%)和不同含盐量(0%,2%,4%,6%)的黄土热导率数据.结合导热路径理论,双电层理论和“絮凝”现象对含水量和含盐量影响下的黄土热导率进行了讨论.获得了如下结论:(1)含水量的变化会引起黄土内部热量传导路径的变化,同时引起“液桥”现象对热量传递产生影响;(2)NaCl盐分对热导率的影响主要体现在对黄土颗粒周围双电层的改变,同时引起的“絮凝”作用会对导热路径产生不利影响进而降低黄土热导率;(3)总的来说,固-固传导,固-液传导和液-液传导作为三种典型的热量传导路径与黄土的含水量和含盐量密切相关.

关键词: 热导率, 含水量, 含盐量, 导热路径

Abstract: Soil heat transfer properties, as a fundamental research issue for geothermal resource development, have become a hot research topic in recent years in the fields of energy, engineering, earth science and geology. However, studies on the thermal conductivity of saline loess have rarely been published.For the urgent demand of geothermal resource development in the Guanzhong area, the thermal conductivity of loess was measured in this study with the help of transient planar heat source method, and the data of thermal conductivity of loess with different water contents (8%, 10%, 12%, 14%, 16%, 18%) and different salt contents (0%, 2%, 4%, 6%) were obtained. The thermal conductivity of loess under the influence of water content and salt content was discussed in the context of thermal path theory, double layer theory and “flocculation” phenomenon. The following conclusions were obtained: (1) Variation in water content causes changes in the internal heat conduction path of the loess, and also causes the “liquid bridge” phenomenon to affect the heat transfer. (2) The effect of NaCl on the thermal conductivity is mainly reflected in the alteration of the double electric layer around the loess particles, and the “flocculation” caused by the same effect will adversely affect the thermal conductivity path and thus reduce the thermal conductivity of the loess. (3) In general, solid-solid conduction, solid-liquid conduction and liquid-liquid conduction as three typical heat transfer paths are closely related to the water and salt content of the loess.

Key words: Thermal conductivity, Water content, Salt content, Heat conduction path

中图分类号: 

  • P314
[1] Al-Ajlan S A.2006. Measurements of thermal properties of insulation materials by using transient plane source technique[J]. Applied Thermal Engineering, 26: 2184-2191, doi: 10.1016/j.applthermaleng.2006.04.006.
[2] Al Rashid Q A, Abuel-Naga H M, Leong E C, et al.2018. Experimental-artificial intelligence approach for characterizing electrical resistivity of partially saturated clay liners[J]. Applied Clay Science, 156(MAY): 1-10, doi: 10.1016/j.clay.2018.01.023.
[3] Cai S, Zhang B, Cui T, et al.2019. Mesoscopic study of the effective thermal conductivity of dry and moist soil[J]. International Journal of Refrigeration, 98.
[4] CHEN B, ZHANG F, MA H l, et al.2019. State of the art review soil thermal conductivity studies[J]. Soil Engineering and Foundation (in Chinese), 33(5): 575-578.
[5] Dai S, Cha J H, Rosenbaum E J, et al.2015. Thermal conductivity measurements in unsaturated hydrate-bearing sediments[J]. Geophysical Research Letters, 42(15): 6295-6305, doi: 10.1002/2015GL064492.
[6] DENG Y S, HE P, ZHOU C L.2004. An experimental research on the thermal conductivity coefficient of saline soil[J]. Journal of Glaciology &Geocryology (in Chinese),(3): 319-323.
[7] DI J Y, LIU X N, REN T S.2012. Comparative study on thermal properties of intact and repacked soil samples[J]. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 28(21): 74-79.
[8] DU Y Z, LI R, WU T H, et al.2015. Study of soil thermal conductivity: research status and advances[J]. Journal of Glaciology and Geocryology (in Chinese), 37(4): 1067-1074.
[9] Gamage D N V, Biswas A, Strachan I B.2019. Spatial variability of soil thermal properties and their relationships with physical properties at field scale[J]. Soil and Tillage Research, 193: 50-58.
[10] Gustafsson S E.1991. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials[J]. Review of Scientific Instruments, 62(3), 797-804, doi: 10.1063/1.1142087.
[11] Hasan M F, Abuel-Naga H, Broadbridge P, et al.2018. Series-parallel structure-oriented electrical conductivity model of saturated clays[J]. Applied Clay Science, 162(sep.): 239-251, doi: 10.1016/j.clay.2018.06.020.
[12] HE L X, WANG X, ZHANG Y J, et al.2018. Model test study on steam diffusion law of unsaturated loess[J]. Journal of Engineering Geology (in Chinese), 26(5): 1265-1271.
[13] Jia G S, Tao Z Y, Meng X Z, et al.2019. Review of effective thermal conductivity models of rock-soil for geothermal energy applications[J]. Geothermics, 77(JAN.): 1-11.
[14] Larson T H, JIN Z H.1989. Soil thermal measurement using a multi-needle probe with pulsed point source[J]. Progress in Geophysics (in Chinese),(1): 83-86.
[15] LEI X D, HU S B, LI J, et al.2018. Thermal properties analysis of bedrock in Beijing[J]. Progress in Geophysics (in Chinese), 33(5): 1814-1823, doi: 10.6038/pg2018BB0373.
[16] LI J, MA F L, DU Y, et al.2015. Experimental study on the thermal conductivity of compacted loess[J]. Science Technology and Engineering (in Chinese), 15(17): 218-221.
[17] LI R J, WANG X, ZHANG Y J, et al.2019. Experimental tests on temperature change of shallow unsaturated loess under atmospheric action and its influencing factors[J]. Journal of Engineering Geology (in Chinese), 27(4): 766-774.
[18] LIU D L, LI Y M, PANG Z H, et al.2019. Geochemical responses of carbonate reservoir to untreated lake water reinjection[J]. Journal of Engineering Geology (in Chinese), 27(1): 178-183.
[19] LIU Q Q, WEI D P, SUN Z T, et al.2014. Review of related researches on calculation of shallow ground heat transfer[J]. Progress in Geophysics (in Chinese), 29(6): 2510-2517, doi: 10.6038/pg20140605.
[20] Lu S, Lu Y, Peng W, et al.2019. A generalized relationship between thermal conductivity and matric suction of soils[J]. Geoderma, 337: 491-497.
[21] Lyu C, Sun Q, Zhang W.2020. Effects of NaCl concentration on thermal conductivity of clay with cooling[J]. Bulletin of Engineering Geology and the Environment, 79(3): 1449-1459.
[22] Palomino A M, Santamarina J C.2005. Fabric map for kaolinite: Effects of pH and ionic concentration on behavior[J]. Clays & Clay Minerals, 53(3): 211-223.
[23] Piqueux S, Christensen.2009. A model of thermal conductivity for planetary soils: 2. Theory for cemented soils[J]. Journal of Geophysical Research: Planets, 114, doi: 10.1029/2008JE003309.
[24] Presley M A, Christensen P R.2010. Thermal conductivity measurements of particulate materials: 5. Effect of bulk density and particle shape[J]. Journal of Geophysical Research:Planets, 115, doi: 10.1029/2009JE003483.
[25] Rees S W, Adjali M H, Zhou Z, et al.2000. Ground heat transfer effects on the thermal performance of earth-contact structures[J]. Renewable & Sustainable Energy Reviews, 4(3): 213-265.
[26] Schumacher S, Breuer D.2006. Influence of a variable thermal conductivity on the thermochemical evolution of Mars[J]. Journal of Geophysical Research: Planets, 111(E2),doi: 10.1029/2005JE002429.
[27] Shan W, Liu Y, Hu Z G, et al.2015. A model for the electrical resistivity of frozen soils and an experimental verification of the model[J]. Cold Regions Science and Technology, 119, 75-83, doi: 10.1016/j.coldregions.2015.07.010.
[28] Smits K M, Kirby E, Massman W J, et al.2016. Experimental and modeling study of forest fire effect on soil thermal Conductivity[J]. Pedosphere, 26(4): 462-473.
[29] Sun Q, Lyu C.2019. Semiempirical correlation between thermal conductivity and electrical resistivity for silt and silty clay soils[J]. Geophysics, 84, MR99-MR105, doi: 10.1190/geo2018-0549.1.
[30] Wang J, Zhang X, Du L.2017. A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil[J]. Journal of Applied Geophysics, 145, 12-16, doi: 10.1016/j.jappgeo.2017.07.009.
[31] Wang S, Ai Q, Zou T Q, et al.2020. Analysis of radiation effect on thermal conductivity measurement of semi-transparent materials based on transient plane source method[J]. Applied Thermal Engineering, 177: 115457, doi: 10.1016/j.applthermaleng.2020.115457.
[32] YANG M L, WANG C Y, HU L Y, et al.1996. Determination of thermal conductivity of conductive liquid NaCl and H2SO4 aqueous solution[J]. Chemistry World (in Chinese),(S1): 151-152.
[33] YIN F L, ZHANG H, SHI Y L.2015. Whether water level decline will slow down temperature rise in North China: Numerical simulation analysis of the influence of shallow ground temperature[J]. Journal of geophysics (in Chinese), 58364-3659, doi: 10.6038/cjg20151018.
[34] YU M Z, PENG X F, FANG Z H, et al.2007. Water morphology and distribution in pores of sandy soil[J]. Journal of Shandong Jianzhu University (in Chinese), 22(6): 526-530.
[35] YUAN H, LI B.1995. Study on swelling salinity and allowable salinity of sulfated saline soil[J]. China Journal of Highway and Transport (in Chinese),(3): 10-14.
[36] ZENG Z T, FAN L Y, MO H Y, et al.2018. Experimental research on the influencing factors of soil thermal conductivity[J]. Acta Energiae Solaris Sinica (in Chinese), 39(2): 377-384.
[37] ZHANG F.2019. Research on the influence of water content and low temperature on the thermal physical parameters of loess[J]. Journal of Railway Engineering Society (in Chinese), 36(11): 57-61.
[38] ZHANG L X, TAO Z X, GU T X.1995. Effects of sodium chloride addition on the basic thermal properties of frozen soil[J]. Journal of Glaciology and Geocryology (in Chinese),(1): 49-53.
[39] ZHAO Y X, YANG S Z.1995. Experiment and analysis of rock thermal conductivity at temperature and pressure[J]. Progress in Geophysics (in Chinese), 10(1): 104-113.
[40] ZHOU Y K, YAN C H, XIE S H, et al.2019. A numerical model for thermal conductivity of soft soils based on mesoscopic simulation[J]. Journal of Engineering Geology (in Chinese), 27(5): 1070-1077.
[41] 陈波, 张芬, 马慧龙, 等. 2019. 土体热导率的研究现状及展望[J]. 土工基础, 33(5): 575-578.
[42] 邓友生, 何平, 周成林. 2004. 含盐土导热系数的试验研究[J]. 冰川冻土,(3): 319-323.
[43] 邸佳颖, 刘晓娜, 任图生. 2012. 原状土与装填土热特性的比较[J]. 农业工程学报, 28(21): 74-79.
[44] 杜宜臻, 李韧, 吴通华, 等. 2015. 土壤热导率的研究现状及其进展[J]. 冰川冻土, 37(4): 1067-1074.
[45] 何陇霞, 王旭, 张延杰, 等. 2018. 非饱和黄土水蒸气扩散规律模型试验研究[J]. 工程地质学报, 26(5): 1265-1271.
[46] 雷晓东, 胡圣标, 李娟, 等. 2018. 北京地区基岩地层热物性参数特征[J]. 地球物理学进展, 33(5): 1814-1823, doi: 10.6038/pg2018BB0373.
[47] 李婕, 马富丽, 杜湧, 等. 2015. 压实黄土导热系数的试验研究[J]. 科学技术与工程, 15(17): 218-221.
[48] 李仁杰, 王旭, 张延杰, 等. 2019. 大气作用下浅层非饱和黄土温度变化及其影响因素研究[J]. 工程地质学报, 27(4): 766-774.
[49] 刘东林, 李义曼, 庞忠和, 等. 2019. 碳酸盐岩热储对湖水回灌的响应[J]. 工程地质学报, 27(1): 178-183.
[50] 刘迁迁, 魏东平, 孙振添, 等. 2014. 浅层地表热传输计算方法综述[J]. 地球物理学进展, 29(6): 2510-2517, doi: 10.6038/pg20140605.
[51] Larson T H, 金志翰. 1989. 使用带有脉冲点源多针探头进行土壤热测量[J]. 地球物理学进展,(1): 83-86.
[52] 杨孟林, 王琮玉, 胡凌云, 等. 1996. 导电液体NaCl和H2SO4水溶液导热系数的测定[J]. 化学世界(S1期): 151-152.
[53] 尹凤玲, 张怀, 石耀霖. 2015. 华北地区水位下降是否会减缓气温上升——浅部地温影响的数值模拟分析[J]. 地球物理学报, 58(10): 3649-3659, doi: 10.6038/cjg20151018.
[54] 袁红, 李斌. 1995. 硫酸盐渍土起胀含盐量及容许含盐量的研究[J]. 中国公路学报,(3): 10-14.
[55] 于明志, 彭晓峰, 方肇洪, 等. 2007. 沙土孔隙内水分形态及分布[J]. 山东建筑大学学报, 22(6): 526-530.
[56] 曾召田, 范理云, 莫红艳, 等. 2018. 土壤热导率的影响因素试验研究[J]. 太阳能学报, 39(2): 377-384.
[57] 张飞. 2019. 含水率和低温对黄土热物理参数影响性研究[J]. 铁道工程学报, 36(11): 57-61.
[58] 张立新, 陶兆祥, 顾同欣. 1995. 氯化钠的掺入对冻土基本热学性质的影响[J]. 冰川冻土,(1): 49-53.
[59] 赵永信, 杨淑贞. 1995. 岩石热导率的温压实验及分析[J]. 地球物理学进展, 10(1): 104-113.
[60] 周殷康, 阎长虹, 谢胜华, 等. 2019. 基于细观模拟的软土导热系数数值预测模型[J]. 工程地质学报, 27(5): 1070-1077.
[1] 单丹丹, 闫铁, 李玮, 薛云龙, 张弦, 罗鹏飞. 地热深井生产过程的井筒传热数值模拟[J]. 地球物理学报, 2021, 36(5): 1891-1899.
[2] 李春荣,饶松,胡圣标,汪集旸,魏志红,黄庆球,胡东风,郭旭升. 川东南焦石坝页岩气区现今地温场特征[J]. 地球物理学报, 2017, 60(2): 617-627.
[3] 彭涛,吴基文,任自强,徐胜平,张海潮. 两淮煤田大地热流分布及其构造控制[J]. 地球物理学报, 2015, 58(7): 2391-2401.
[4] 唐晓音,胡圣标,张功成,梁建设,杨树春,沈怀磊,饶松,李卫卫. 南海北部大陆边缘盆地地热特征与油气富集[J]. 地球物理学报, 2014, 57(2): 572-585.
[5] 左银辉,邱楠生,邓已寻,饶松,徐深谋,李建国. 查干凹陷大地热流[J]. 地球物理学报, 2013, 56(9): 3038-3050.
[6] 饶松,胡圣标,朱传庆,唐晓音,李卫卫,汪集旸. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报, 2013, 56(8): 2760-2770.
[7] 刘善琪,李永兵,田会全,刘旭耀,朱伯靖,石耀霖. 含湿孔隙岩石有效热导率的数值分析[J]. 地球物理学报, 2012, 55(12): 4239-4248.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!