地球物理学报 ›› 2021, Vol. 36 ›› Issue (5): 1865–1873.doi: 10.6038/pg2021FF0265

• 固体地球物理及空间物理学(大气、行星、地球动力学、重磁电及地震学、地热学) • 上一篇    下一篇

基于EMD的GNSS时间序列异常值探测算法

刘丹丹   

  1. 攀枝花学院土木与建筑工程学院,攀枝花 617067
  • 收稿日期:2021-06-09 修回日期:2021-09-12 发布日期:2021-11-11
  • 作者简介:刘丹丹,女,1972年出生,博士,教授,主要从事测绘及地理信息系统应用研究. E-mail: 1802363325@qq.com
  • 基金资助:
    四川省测绘地理信息学会科技开放基金课题“金沙流域(攀枝花段)三维景观格局脆弱性分析” (ccx202119)资助.

New method of outlier detection for GNSS coordinate time series based on EMD approach

LIU DanDan   

  1. School of Civil and Architecture Engineering, Panzhihua University, Panzhihua 617067,China
  • Received:2021-06-09 Revised:2021-09-12 Published:2021-11-11

摘要: 考虑到传统谐波模型难以精确地描述GNSS坐标时间序列的非线性时变季节性变化,进一步影响了异常值探测.本文提出了一种基于经验模态分解(Empirical Mode Decomposition, EMD)和四分位距统计量(Interquartile Range, IQR)的组合异常值探测算法.新算法的基本思想是:先采用EMD算法将GNSS坐标时间序列分解为若干不同频率的IMF(Intrinsic Mode Function)分量,并采用相关系数法进行信噪分离,最后采用IQR准则对残差序列进行异常值探测.模拟实验分析结果表明,传统算法仅能探测到83%的异常值,而新算法能够探测到91%的异常值.陆态网络实测数据分析结果进一步验证了新算法较传统算法能更加有效地探测出GNSS坐标时间序列的异常值.

关键词: GNSS坐标序列, 异常值, 经验模态分解, 四分位距统计量

Abstract: Considering that the signals extracted by traditional harmonic model are not adequate to describe the non-linear time-varying seasonal variation in GNSS position time series, which will further affect the performance of outliers detection. For this reason, the paper proposed a new approach for outliers detection in GNSS position time series which combined the EMD and IQR statistic. The basic idea of the new algorithm is: firstly, the EMD algorithm is employed to decompose the position time series into several components with different frequencies, and then the correlation coefficient method is used to separate the signal and noise, lastly, the outliers in residual time series are detected by the IQR criterion. The effectiveness of new algorithm is verified by the simulated and real time series analysis and the results show that the new approach performs better than the traditional approach.

Key words: GNSS position time series, Outliers, Empirical mode decomposition, Interquartile range

中图分类号: 

  • P237
[1] Bennett R A.2008. Instantaneous deformation from continuous GPS: Contributions from quasi-periodic loads[J]. Geophysical Journal International, 174(3): 1052-1064.
[2] Borghi A, Cannizzaro L, Vitti A.2012. Advanced techniques for discontinuity detection in GNSS coordinate time-series. An Italian case study[M] //Geodesy for Planet Earth Springer, Berlin, Heidelberg, 627-634.
[3] Chen Q, Van Dam T, Sneeuw N, et al.2013. Singular spectrum analysis for modeling seasonal signals from GPS time series[J]. Journal of Geodynamics, 72: 25-35.
[4] Didova O, Gunter B, Riva R, et al.2016. An approach for estimating time-variable rates from geodetic time series[J]. Journal of Geodesy, 90(11): 1207-1221.
[5] Huang N E, Shen Z, Long S R, et al.1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971): 903-998.
[6] Justel A, Pena D, Tsay R S.2001. Detection of outlier patches in autoregressive time series[J]. Statistica Sinica, 11(3): 651-673.
[7] Kaczmarek A, Kontny B.2018. Estimates of seasonal signals in GNSS time series and environmental loading models with iterative least-squares estimation (ILSE) approach[J]. Acta. Geodyn. Geomater, 15(2): 131-141.
[8] Klos A, Bogusz J, FigurskiI M, et al.2015. On the handling of outliers in the GNSS time series by means of the noise and probability analysis[M] //IAG 150 Years. Springer, Cham, 657-664.
[9] Klos A, Bos M S, Bogusz J.2018. Detecting time-varying seasonal signal in GPS position time series with different noise levels[J]. GPS Solutions, 22(1): 1-11.
[10] Langbein J, Bock Y.2004. High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements[J]. Geophysical Research Letters, 31(15).
[11] Mohammadinia F, Chinipardaz R.2019. Combining Bayesian method and Kalman smoother for detection additive outlier patches in autoregressive time series[J]. Communications in Statistics-Simulation and Computation, 48(4): 2191-2209.
[12] Nikolaidis R. (2002). Observation of global and seismic deformation with the Global Positioning System [Ph.D. thesis]. University of California, San Diego.
[13] Peltier W R, Argus D F, Drummond R.2015. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model[J]. Journal of Geophysical Research: Solid Earth, 120(1): 450-487.
[14] Perfetti N.2006. Detection of station coordinate discontinuities within the Italian GPS Fiducial Network[J]. Journal of Geodesy, 80(7): 381-396.
[15] Richter A, Ivins E, Lange H, et al.2016. Crustal deformation across the Southern Patagonian Icefield observed by GNSS[J]. Earth and Planetary Science Letters, 452: 206-215.
[16] Scargle J D.1982. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data[J]. The Astrophysical Journal, 263: 835-853.
[17] Tian Y F.2011. iGPS: IDL tool package for GPS position time series analysis[J]. GPS solutions, 15(3): 299-303.
[18] Tobita M.2016. Combined logarithmic and exponential function model for fitting postseismic GNSS time series after 2011 Tohoku-Oki earthquake[J]. Earth, Planets and Space, 68(1): 1-12.
[19] Wang J, Wang J L, Roberts C.2009. Reducing GPS carrier phase errors with EMD-wavelet for precise static positioning[J]. Survey Review, 41(312): 152-161.
[20] Wu D C, Yan H M, Shen Y C.2017. TSAnalyzer, a GNSS time series analysis software[J]. GPS Solutions, 21(4): 1389-1394.
[21] Zhang Q Q, Gui Q M.2013. Bayesian methods for outliers detection in GNSS time series[J]. Journal of Geodesy, 87(7): 609-627.
[22] 党博, 王咪咪, 杨玲, 等. 2021. 井下瞬变电磁探测信号基线漂移校正方法[J]. 现代电子技术, 44(07): 111-115.
[23] 窦希杰, 王世博, 刘后广, 等. 2021. 基于EMD特征提取与随机森林的煤矸识别方法[J]. 工矿自动化, 47(03): 60-65.
[24] 冯凯, 董秀成, 刘栋博. 2021. 基于经验模态分解-小波包变换的表面肌电信号手势识别[J].中国医学物理学杂志,38(04):461-467.
[25] 明锋, 曾安敏, 景一帆. 2016. L1范数与IQR统计量组合的GNSS坐标序列粗差探测算法[J]. 测绘科学技术学报, 33(02): 127-132.
[26] 孙洁娣, 郝雅立, 温江涛, 等. 2013. 基于EMD的高压燃气管道泄漏信号欠定盲分离方法[J]. 振动与冲击, 32(18): 81-86.
[27] 王瀚, 罗兴锜, 薛延刚, 等. 2012. EMD指标能量提取水轮机尾水管动态特征信息[J]. 水力发电学报, 31(05): 286-291.
[28] 杨凯钧, 袁鹏, 秦昌威. 2015. 顾及偏态的IQR法则在GPS时间序列异常值探测中的应用[J]. 大地测量与地球动力学, 35(05): 793-796.
[29] 张双成, 李振宇, 何月帆, 等. 2018. GNSS高程时间序列周期项的经验模态分解提取[J]. 测绘科学, 43(08): 80-84, 96.
[1] 拜阳,宋海斌,董崇志,刘伯然,陈江欣,耿明会. 地震海洋学方法在海洋混合参数提取中的研究与应用——以南海内波和地中海涡旋为例[J]. 地球物理学报, 2015, 58(7): 2473-2485.
[2] 贾瑞生,赵同彬,孙红梅,闫相宏. 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报, 2015, 58(3): 1013-1023.
[3] 李月,彭蛟龙,马海涛,林红波. 过渡内蕴模态函数对经验模态分解去噪结果的影响研究及改进算法[J]. 地球物理学报, 2013, 56(2): 626-634.
[4] 陈洁,朱本铎,温宁,万荣胜. 南海海岛海山的重磁响应特征[J]. 地球物理学报, 2012, 55(09): 3152-3162.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!