地球物理学报 ›› 2021, Vol. 36 ›› Issue (5): 2062–2068.doi: 10.6038/pg2021EE0380

• 应用地球物理学Ⅰ(油气及金属矿产地球物理勘探) • 上一篇    下一篇

基于重磁不同阶比值的场源相关成像法研究

马国庆, 牛润馨, 李丽丽*, 高桐   

  1. 吉林大学地球探测科学与技术学院,长春 130021
  • 收稿日期:2020-11-25 修回日期:2021-05-18 发布日期:2021-11-11
  • 通讯作者: * 李丽丽,女,1983年生,博士,副教授,主要从事重磁数据处理与解释研究.E-mail: lilili@jlu.edu.cn
  • 作者简介:马国庆,男,1984年生,博士,教授,主要从事重磁数据采集、校正与解释技术方面的研究. E-mail: maguoqing@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目“空-地-井立体数据三维联合反演与建模方法研究”(2017YFC0602203); 吉林省优秀青年人才基金项目(20190103011JH)联合资助.

Non-degree gradient ratio function of gravity and magnetic data for field-source correlation imaging method study

MA GuoQing, NIU RunXin, LI LiLi*, GAO Tong   

  • Received:2020-11-25 Revised:2021-05-18 Published:2021-11-11

摘要: 重磁异常相关成像法是一种快速确定场源位置的有效方法,其相关系数极大值表征地质体中心位置.现有方法需已知地质体构造指数,本文提出重磁不同阶梯度比值的相关成像方法,可有效去除构造指数的影响,并讨论不同组合梯度比值的应用效果.对于磁异常数据,考虑到剩磁的影响,将采用解析信号及其梯度的比值来获取地质体的分布.通过理论模型试验,证明梯度比值相关成像法可以确定地质体中心位置,也具备良好的抗噪性.此外,解析信号二阶垂直梯度与解析信号比值的相关成像结果最稳定,精度和分辨率最高,为了降低噪声的干扰,在二阶及以上导数计算时采用Laplace方程来完成.将本文方法应用于埃及Hamrawien地区的实测磁数据的解释,反演获得地下异常体的深度在680 m和808 m.

关键词: 梯度比值, 相关成像, 解析信号, 导数

Abstract: Gravity and magnetic anomaly correlation imaging is an effective method to quickly determine the location of field sources, the maximum of correlation coefficient can represent the central position of geological body. But the existing methods need to know the geological body tectonic index. However, in inversion, the type of underground geological body cannot be predicted, and the corresponding tectonic index cannot be given. In this article, we propose a correlation imaging method with non-degree gradient ratios of gravity and magnetic, which can effectively remove the influence of tectonic index, only need to find the location of the maximum value of the correlation coefficient to determine the center position of the geological body. And we discuss the application effects of non-degree combinations of gradient ratios. For magnetic anomaly data, considering the effect of residual magnetization, analytical signal and its gradient will be used to obtain the distribution of the geological body. Through theoretical model test, it is proved that gradient ratio correlation imaging method can determine the central location of geological body and has good anti-noise performance. In addition, the imaging results of the second order vertical gradient and the anomalous ratio are the most stable, with the highest accuracy and resolution, therefore, in the interpretation of measured magnetic data, this ratio correlation imaging method is used for inversion. In order to reduce noise interference, the Laplace equation is adopted to calculate the derivatives of the second order and above. By applying the method in this paper to the interpretation of the measured magnetic data in Hamrawien area, Egypt, the depth of the underground anomalous bodies are 680 m and 808 m.

Key words: School of Earth Exploration Science and Technology, Jilin University, Changchun 130021, China

中图分类号: 

  • P631
[1] Fedi M.2007. DEXP: a fast method to determine the depth and the structural index of potential fields sources[J]. Geophysics, 72(1): I1-I11, doi: 10.1190/1.2399452.
[2] Guo L, Meng X, Zhang G.2014. Three-dimensional correlation imaging for total amplitude magnetic anomaly and normalized source strength in the presence of strong remanent magnetization[J]. Journal of Applied Geophysics, 111: 121-128, doi: 10.1016/j.jappgeo.2014.10.007.
[3] GUO L H, MENG X H, SHI L.2010. 3D correlation imaging for magnetic anomaly ΔT data[J]. Chinese Journal of Geophysics (in Chinese), 53(2): 435-441, doi: 10.3969/j.issn.0001-5733.2010.02.022.
[4] GUO L H, MENG X H, SHI L, et al.2009. 3-D Correlation imaging for gravity gradiometry data[J]. Chinese Journal of Geophysics (in Chinese), 52(4): 1098-1106, doi: 10.3969/j.issn.0001-5733.2009.04.027.
[5] Li J, Zhang Y, Yin G, et al.2017. An approach for estimating the magnetization direction of magnetic anomalies[J]. Journal of Applied Geophysics, 137: 1-7, doi: 10.1016/j.jappgeo.2016.12.009.
[6] Mauriello P, Patella D.2001. Gravity probability tomography: a new tool for buried mass distribution imaging[J]. Geophysical Prospecting, 49(1): 1-12, doi: 10.1046/j.1365-2478.2001.00234.x.
[7] MA G Q, DU X J, LI L L.2013. Improved potential field correlation imaging method[J]. Earth Sciences(Ser.D) (in Chinese), 38(5): 1121-1127, doi: 10.3799/dqkx.2013.111.
[8] MENG X H, LIU G F, CHEN Z X, et al.2012. 3D gravity and magnetic inversion for physical properties based on residual anomaly correlation[J]. Chinese Journal of Geophysics, 55(1): 304-309, doi: 10.6038/j.issn.0001-5733.2012.01.030.
[9] Patella D.1997. Introduction to ground surface self-potential tomography[J]. Geophysical Prospecting, 45(4): 653-681, doi: 10.1046/j.1365-2478.1997.430277.x.
[10] SHEN M C, RAN J L.2017. The application of 3D correlation imaging method of magnetic anomaly to rugged terrains[J]. Chinese Journal of Engineering Geophysics (in Chinese), 14(1): 50-55, doi: 10.3969/j.issn.1672-7940.2017.01.009.
[11] SHI L, GUO L H, MENG X H.2012. 3D correlation imaging of the vertical gradient of magnetic total file anomaly[J]. Progress in Geophysics (in Chinese), 27(4): 1609-1614, doi: 10.6038/j.issn.1004-2903.2012.04.038.
[12] ZHAO G X, WU Y G, WANG F G, et al.2016. Gravitycorrelation imaging based on window data[J]. Global Geology (in Chinese), 35(3): 858-864, doi: 10.3969/j.issn.1004-5589.2016.03.027.
[13] 郭良辉, 孟小红, 石磊. 2010. 磁异常ΔT三维相关成像[J]. 地球物学报, 53(2): 435-441, doi: 10.3969/j.issn.0001-5733.2010.02.022.
[14] 郭良辉, 孟小红, 石磊, 等. 2009. 重力和重力梯度数据三维相关成像[J]. 地球物学报, 52(4): 1098-1106, doi: 10.3969/j.issn.0001-5733.2009.04.027.
[15] 马国庆, 杜晓娟, 李丽丽. 2013. 改进的位场相关成像方法[J]. 地球科学(D辑), 38(5): 1121-1127, doi: 10.3799/dqkx.2013.111.
[16] 孟小红, 刘国峰, 陈召曦, 等. 2012. 基于剩余异常相关成像的重磁物性反演方法[J]. 地球物理学报, 55(1): 304-309, doi: 10.6038/j.issn.0001-5733.2012.01.030.
[17] 沈铭成, 冉军林. 2017. 起伏地形磁异常三维相关成像方法及应用[J]. 工程地球物理学报, 14(1): 50-55, doi: 10.3969/j.issn.1672-7940.2017.01.009.
[18] 石磊, 郭良辉, 孟小红. 2012. 磁总场异常垂直梯度三维相关成像[J]. 地球物理学进展, 27(4): 1609-1614, doi: 10.6038/j.issn.1004-2903.2012.04.038.
[19] 赵国兴, 吴燕冈, 王凤刚, 等. 2016. 基于窗口数据的重力相关成像[J]. 世界地质, 35(3): 858-864, doi: 10.3969/j.issn.1004-5589.2016.03.027.
[1] 张红兵, 喻铮铮, 张捍卫. 缔合勒让德函数的精度评定方法研究[J]. 地球物理学报, 2021, 36(5): 1900-1904.
[2] 杨仁虎. 逆时偏移震源子波影响分析[J]. 地球物理学报, 2021, 36(5): 2102-2108.
[3] 刘财,胡宁,郭智奇,罗玉钦. 基于分数阶时间导数常Q黏弹本构关系的含黏滞流体双相VTI介质中波场数值模拟[J]. 地球物理学报, 2018, 61(6): 2446-2458.
[4] 舒晴,马国庆,刘财,李丽丽. 全张量磁梯度数据解释的均衡边界识别及深度成像技术[J]. 地球物理学报, 2018, 61(4): 1539-1548.
[5] 邵炜栋,杨锴,邢逢源,熊凯,薛颖飞. 慢度平方三角网格立体层析反演方法[J]. 地球物理学报, 2017, 60(9): 3574-3586.
[6] 张冲,黄大年,刘杰. 重力场向下延拓Milne法[J]. 地球物理学报, 2017, 60(11): 4212-4220.
[7] 颜廷杰,吴燕冈,袁园,陈玲娜. 应用加强解析信号倾斜角进行位场数据的边界检测[J]. 地球物理学报, 2016, 59(7): 2694-2702.
[8] 王一博,郑忆康,薛清峰,常旭,Tong W. Fei,Yi Luo. 基于Hilbert变换的全波场分离逆时偏移成像[J]. 地球物理学报, 2016, 59(11): 4200-4211.
[9] 张衡,刘洪,唐祥德,王洋,张宝金. 基于平均导数优化方法的VTI介质频率空间域正演[J]. 地球物理学报, 2015, 58(9): 3306-3316.
[10] 袁园,黄大年,余青露. 利用加强水平方向总水平导数对位场全张量数据进行边界识别[J]. 地球物理学报, 2015, 58(7): 2556-2565.
[11] 曾小牛,李夕海,贾维敏,刘代志. 位场各阶垂向导数换算的新正则化方法[J]. 地球物理学报, 2015, 58(4): 1400-1410.
[12] 曹健,陈景波,曹书红. 频率域波动方程正演基于多重网格预条件的迭代算法研究[J]. 地球物理学报, 2015, 58(3): 1002-1012.
[13] 刘式达,付遵涛,刘式适. 间歇湍流的分形特征——分数维及分数阶导数的应用[J]. 地球物理学报, 2014, 57(9): 2751-2755.
[14] 张衡,刘洪,刘璐,金维浚,史小东. 基于平均导数方法的声波方程频率域高阶正演[J]. 地球物理学报, 2014, 57(5): 1599-1611.
[15] 李丽丽,黄大年,韩立国. 归一化总水平导数法在位场数据解释中的应用[J]. 地球物理学报, 2014, 57(12): 4123-4131.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!