[1] Bhattacharyya B K. A generalized multibody model for inversion of magnetic anomalies. Geophysics, 1980, 45(2): 255-270.[2] Guillen A, Menichetti V. Gravity and magnetic inversion with minimization of a specific functional. Geophysics, 1984, 49(8): 1354-1360.[3] Li YG, Oldenburg D W. 3-D inversion of magnetic data. Geophysics, 1996, 61(2): 394-408.[4] Portniaguine O, Zhdanov M S. Focusing geophysical inversion images. Geophysics, 1999, 64(3): 874-887.[5] Portniaguine O, Zhdanov M S. 3-D magnetic inversion with data compression and image focusing. Geophysics, 2002, 67(5): 1532-1541.[6] Li Y G, Oldenburg D W. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys. J. Int., 2003, 152(2): 251-265.[7] 姚长利, 郑元满, 张聿文. 重磁异常三维物性反演随机子域法方法技术. 地球物理学报, 2007, 50(5): 1576-1583. Yao C L, Zheng Y M, Zhang Y W. 3-D gravity and magnetic inversion for physical properties using stochastic subspaces. Chinese J. Geophys.(in Chinese), 2007, 50(5): 1576-1583.[8] Zeyen H, Pous J. A new 3-D inversion algorithm for magnetic total field anomalies. Geophys. J. Int., 1991, 104(3): 583-591.[9] Pilkington M. 3-D magnetic imaging using conjugate gradients. Geophysics, 1997, 62(4): 1132-1142.[10] Pilkington M. 3D magnetic data-space inversion with sparseness constraints. Geophysics, 2009, 74(1): L7-L15.[11] Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 1990, 55(1): 80-91.[12] Nabighian M N, Hansen R O. Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform. Geophysics, 2001, 66(6): 1805-1810.[13] 张季生, 高锐, 李秋生等. 欧拉反褶积与解析信号相结合的位场反演方法. 地球物理学报, 2011, 54(6): 1634-1641. Zhang J S, Gao R, Li Q S, et al. A combined Euler and analytic signal method for an inversion calculation of potential data. Chinese J. Geophys.(in Chinese), 2011, 54(6): 1634-1641.[14] Salem A, Williams S, Fairhead D, et al. Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 2007, 73(1): L1-L10.[15] Mauriello P, Patella D. Localization of magnetic sources underground by a data adaptive tomographic scanner. http://arxiv.org/physics/0511192.[16] Mauriello P, Patella D. Localization of magnetic sources underground by a probability tomography approach. Progress in Electromagnetics Research M, 2008, 3: 27-56.[17] Chianese D, Lapenna V. Magnetic probability tomography for environmental purposes: test measurements and field applications. Journal of Geophysics and Engineering, 2007, 4(1): 63-74.[18] 郭良辉, 孟小红, 石磊等. 重力和重力梯度数据三维相关成像. 地球物理学报, 2009, 52(4): 1098-1106. Guo L H, Meng X H, Shi L, et al. 3-D correlation imaging for gravity and gravity gradiometry data. Chinese J. Geophys.(in Chinese), 2009, 52(4): 501-510.[19] 郭良辉, 孟小红, 石磊. 磁异常ΔT三维相关成像. 地球物理学报, 2010, 53(2): 435-441. Guo L H, Meng X H, Shi L. 3D correlation imaging for magnetic anomaly ΔT data. Chinese J. Geophys.(in Chinese), 2010, 53(2): 435-441.[20] Hood P J, Teskey D J. Aeromagnetic gradiometer program of the Geological Survey of Canada. Geophysics, 1989, 54(8): 1012-1022.[21] Schmidt P W, Clark D A. The magnetic gradient tensor: its properties and uses in source characterization. The Leading Edge, 2006, 25(1): 75-78.[22] 郭志宏. 航磁及梯度数据正反演解释方法技术实用化改进及应用. 北京: 中国地质大学, 2004. Guo Z H. The Practical improvement of forward and inversing technique on aeromagnetic gradient data and its application (in Chinese). Beijing: China University of Geosciences, 2004. |