地球物理学报 ›› 2018, Vol. 61 ›› Issue (4): 1615–1627.doi: 10.6038/cjg2018L0444

• 应用地球物理学 • 上一篇    下一篇

地下磁共振响应特征与超前探测

林君1,2, 赵越1,3, 易晓峰1,2, 蒋川东1,2   

  1. 1. 吉林大学仪器科学与电气工程学院, 长春 130026;
    2. 地球探测信息仪器教育部重点实验室, 长春 130026;
    3. 吉林建筑大学电气与计算机学院, 长春 130118
  • 收稿日期:2017-07-27 修回日期:2017-11-03 出版日期:2018-04-05
  • 通讯作者: 易晓峰,男,1985年生,2014年毕业于吉林大学,研究方向为核磁共振地下水探测方法和仪器.E-mail:yixiaofeng@jlu.edu.cn E-mail:yixiaofeng@jlu.edu.cn
  • 作者简介:林君,男,1954年生,1982年毕业于吉林大学,研究方向为地球物理探测技术及仪器.E-mail:lin_jun@jlu.edu.cn
  • 基金资助:
    国家重大科学仪器设备开发和应用专项项目(2011YQ030133)和国家自然科学基金青年科学基金项目(41604083,41504086)资助.

Characteristics of underground magnetic resonance and advanced detection of hazardous water

Jun LIN1,2, Yue ZHAO1,3, XiaoFeng YI1,2, ChuanDong JIANG1,2   

  1. 1. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130026, China;
    2. Key Laboratory of Geo-Exploration Instrumentation, Ministry of Education, Changchun 130026, China;
    3. School of Electrical and Computer, Jilin Jianzhu University, Changchun 130118, China
  • Received:2017-07-27 Revised:2017-11-03 Online:2018-04-05

摘要: 地下(矿井和隧道内)超前探测灾害水源是磁共振测深(Magnetic Resonance Sounding,MRS)方法应用的新领域,在地球物理方法中是一个难题.本文在地面磁共振探测理论的基础上,建立地下全空间模型,推导直立线圈的磁共振响应信号表达式,对比国际标准模型验证了数值计算的准确性.引入旋转系数矩阵,计算任意地磁场方向和线圈方向的激发场垂直分量.研究了磁共振响应信号与线圈法向偏角和倾角的关系,指出当线圈法向方向垂直于地磁场方向时,磁共振响应信号最大.同时,研究表明磁共振超前探测距离与激发脉冲矩和接收灵敏度紧密相关,激发脉冲矩越大,接收灵敏度越高,则超前探测距离越大,但存在极限距离.在地下线圈尺寸受限的情况下,为使检测信号灵敏度为5 nV时,超前探测距离达到30 m,提出了边长2 m线圈的匝数优化方案,共圈模式最少需要100匝,分离线圈模式最少需要10匝发射线圈和160匝接收线圈.仿真模型试验结果证明,随着噪声水平增大,磁共振超前探测距离和反演分辨率均减小.泽雅隧道探测实践表明,本文提出的地下空间磁共振理论在矿井和隧道环境中进行超前探测是可行的.

关键词: 磁共振测深, 核磁共振, 灾害水源, 超前探测, 接收灵敏度

Abstract: Advanced detection of underground hazardous water in mines or tunnels is a new application field of the magnetic resonance sounding (MRS) method, as well as a new challenge in geophysics. In this paper, on the theoretical basis of the surface MRS method, a model of underground MRS of whole space is constructed, and the expression of MRS signal with a vertical coil is derived. Numerical calculation and comparison with the international standard simulation model verifies the accuracy of this formula. By introducing the rotation coefficient matrix, the vertical component of the exciting field with arbitrary directions of the geomagnetic field and the coil is calculated. The relationship between MRS signal and coil declination angle, as well as inclination angle is studied. The results reveal that when the normal direction of the coil is perpendicular to the earth magnetic field, MRS signal is the largest. In addition, the advanced detection distance of MRS is closely related to exciting pulse moment and receiving sensitivity. The larger exciting pulse moment and receiving sensitivity are, the longer advanced detection distance is. However, this distance has a limit value. In the condition of constrained coil size of 2 m, the receiving sensitivity of 5 nV and the advanced detection distance of 30 m, an optimization scheme of various coil modes with transmitting and receiving coincident coil or separated coil is proposed. The coincident coil mode needs 100 turns at least, while the separated coil mode needs 10 turns of transmitting coil and 160 turns of the receiving coil. Tests on a synthetic model show that the advance detection distance and the inversion resolution of MRS decrease with the increasing noise level. The application of this method to the Zeya Tunnel demonstrates that the underground whole space MRS theory for advanced detection of hazardous water proposed in this work is feasible in mines and tunnels.

Key words: Magnetic Resonance Sounding, Nuclear Magnetic Resonance, Water disaster, Advanced detection, Receiving sensitivity

中图分类号: 

  • P631
Behroozmand A A, Auken E, Fiandaca G, et al. 2012. Efficient full decay inversion of MRS data with a stretched-exponential approximation of the T2* distribution. Geophysical Journal International, 190(2):900-912.
Braun M, Hertrich M, Yaramanci U. 2005. Complex inversion of MRS data. Near Surface Geophysics, 3(3):155-164.
Chalikakis K, Nielsen M R, Legchenko A. 2008. MRS applicability for a study of glacial sedimentary aquifers in Central Jutland, Denmark. Journal of Applied Geophysics, 66(3-4):176-187.
Girard J F, Legchenko A, Boucher M, et al. 2008. Numerical study of the variations of magnetic resonance signals caused by surface slope. Journal of Applied Geophysics, 66(3):94-103.
Greben J M, Meyer R, Kimmie Z. 2011. The underground application of Magnetic Resonance Soundings. Journal of Applied Geophysics, 75(2):220-226.
Hertrich M, Braun M, Yaramanci U. 2005. Magnetic resonance soundings with separated transmitter and receiver loops. Near Surface Geophysics, 3(3):141-154.
Hertrich M, Yaramanci U. 2006. Magnetic Resonance Sounding Data Inversion. 3rd Magnetic Resonance Sounding Workshop, A Reality in Applied Hydrogeophysics. 15-20.
Hertrich M, Braun M, Günther T, et al. 2007. Surface nuclear magnetic resonance tomography. IEEE Transactions on Geoscience and Remote Sensing, 45(11):3752-3759.
Legchenko A V, Shushakov O A. 1998. Inversion of surface NMR data. Geophysics, 63(1):75-84.
Legchenko A, Baltassat J M, Beauce A, et al. 2002. Nuclear magnetic resonance as a geophysical tool for hydrogeologists. Journal of Applied Geophysics, 50(1-2):21-46.
Legchenko A, Valla P. 2002. A review of the basic principles for proton magnetic resonance sounding measurements. Journal of Applied Geophysics, 50(1-2):3-19.
Lin J, Duan Q M, Wang Y J. 2010. Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (in Chinese). Beijing:Science Press.
Lin J, Jiang C D, Lin T T, et al. 2013. Underground Magnetic Resonance Sounding (UMRS) for detection of disastrous water in mining and tunneling. Chinese Journal of Geophysics (in Chinese), 56(11):3619-3628, doi:10.6038/cjg20131103.
Lin J, Du G F, Zhang J, et al. 2017. Development of a rigid one-meter-side and cooled coil sensor at 77 K for magnetic resonance sounding to detect subsurface water sources. Sensors, 17(6):E1362.
Lin T T, Zhang Y, Wan L, et al. 2016. A para-whole space model for underground magnetic resonance sounding studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1):264-271.
Müeller-Petke M, Yaramanci U. 2006. Analysis of magnetic resonance tomographic (MRT) kernels for optimized field layouts.//Near Surface 2006, 12th European Meeting of Environmental and Engineering Geophysics. Helsinki, Finland:EAGE, 37-40.
Müeller-Petke M, Yaramanci U. 2010. QT inversion-comprehensive use of the complete surface NMR data set. Geophysics, 75(4):WA199-WA209.
Pan Y L, He H, Li Z Y, et al. 2003. Surface detection of groundwater with the nuclear magnetic resonance method and its application results in China. Geological Bulletin of China (in Chinese), 22(2):135-139.
Qin S W, Ma Z J, Jiang C D, et al. 2017. Response characteristics and experimental study of underground magnetic resonance sounding using a small-coil sensor. Sensors, 17(9):E2127.
Rommel I. 2006. The effect of the topography on Magnetic Resonance Tomography (MRT). Berlin:Technical University Berlin.
Schirov M, Legchenko A, Creer G. 1991. A new direct non-invasive groundwater detection technology for Australia. Exploration Geophysics, 22(2):333-338.
Shang X L, Lin J, Tian Y J, et al. 2011. Relay smooth switching technique and application in magnetic resonance sounding system. Journal of Jilin University Engineering and Technology Edition (in Chinese), 41(2):398-402.
Vouillamoz J M, Favreau G, Massuel S, et al. 2008. Contribution of magnetic resonance sounding to aquifer characterization and recharge estimate in semiarid Niger. Journal of Applied Geophysics, 64(3-4):99-108.
Walsh D O. 2008. Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations. Journal of Applied Geophysics, 66(3-4):140-150.
Wang Y J, Lin J, Rong L L, et al. 2008. Amplifier design of surface nuclear magnetic resonance instrument for underground water investigation. Chinese Journal of Scientific Instrument (in Chinese), 29(8):1627-1632.
Weichman P B, Lavely E M, Ritzwoller M. 1999. Surface nuclear magnetic resonance imaging of large systems. Physical Review Letters, 82(20):4102-4105.
Weichman P B, Lavely E M, Ritzwoller M H. 2000. Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems. Physical Review E, 62(1):1290-1312.
Yaramanci U, Lange G, Hertrich M. 2002. Aquifer characterisation using Surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site. Journal of Applied Geophysics, 50(1-2):47-65.
Yi X F, Li P F, Lin J, et al. 2013. Simulation and experimental research of MRS response based on multi-turn loop. Chinese Journal of Geophysics (in Chinese), 56(7):2484-2493, doi:10.6038/cjg20130734.
Yi X F. 2014. Research on magnetic resonance sounding for underground engineering disaster water detection using meter scale antenna (in Chinese). Changchun:College of Instrumentation and Electrical Engineering, Jilin University.
林君, 段清明, 王应吉. 2010. 核磁共振找水仪原理与应用. 北京:科学出版社.
林君, 蒋川东, 林婷婷等. 2013. 地下工程灾害水源的磁共振探测研究. 地球物理学报, 56(11):3619-3628, doi:10.6038/cjg20131103.
潘玉玲, 贺颢, 李振宇等. 2003. 地面核磁共振找水方法在中国的应用效果. 地质通报, 22(2):135-139.
尚新磊, 林君, 田瑜娟等. 2011. 继电器平滑切换技术及其在核磁共振感应系统中的应用. 吉林大学学报(工学版), 41(2):338-402.
王应吉, 林君, 荣亮亮等. 2008. 地面核磁共振找水仪放大器设计. 仪器仪表学报, 29(8):1627-1632.
易晓峰, 李鹏飞, 林君等. 2013. 基于多匝环形线圈的核磁共振信号响应计算与试验研究. 地球物理学报, 56(7):2484-2493, doi:10.6038/cjg20130734.
易晓峰. 2014. 地下工程水灾害隐患米级天线磁共振探测技术研究. 长春:吉林大学仪器科学与电气工程学院.
[1] 范宜仁;刘建宇;葛新民;邓少贵;刘洪亮;顾定娜. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4): 1628-1638.
[2] 聂利超;张欣欣;刘斌;刘征宇;王传武;郭谦;刘海东;王厚同. 基于GPU混合反演的隧道电阻率超前探测成像研究[J]. 地球物理学报, 2017, 60(12): 4916-4927.
[3] 林君;张健;易晓峰. 地下核磁共振小尺寸线圈设计和实验[J]. 地球物理学报, 2017, 60(11): 4184-4193.
[4] 赵培强;孙中春;罗兴平;王振林;毛志强;吴义志;夏培. 致密油储层核磁共振测井响应机理研究[J]. 地球物理学报, 2016, 59(5): 1927-1937.
[5] 闫建平;温丹妮;李尊芝;耿斌;蔡进功;梁强;言语. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法——以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(4): 1543-1552.
[6] 刘洋;吴小平. 巷道超前探测的并行Monte Carlo方法及电阻率各向异性影响[J]. 地球物理学报, 2016, 59(11): 4297-4309.
[7] 李貅;刘文韬;智庆全;赵威. 核磁共振与瞬变电磁三维联合解释方法[J]. 地球物理学报, 2015, 58(8): 2730-2744.
[8] 程晶晶;吴磊;宋公仆. 基于SVD和BRD的二维核磁共振测井正则化反演算法研究[J]. 地球物理学报, 2014, 57(10): 3453-3465.
[9] 林婷婷;慧芳;蒋川东;林君. 分层多指数磁共振弛豫信号反演方法研究[J]. 地球物理学报, 2013, 56(8): 2849-2861.
[10] 李新;肖立志;黄科;刘化冰;宗芳荣. 随钻核磁共振测井的地层界面响应特征[J]. 地球物理学报, 2013, 56(8): 2862-2869.
[11] 易晓峰;李鹏飞;林君;段清明;蒋川东;李同. 基于多匝环形线圈的核磁共振信号响应计算与试验研究[J]. 地球物理学报, 2013, 56(7): 2484-2493.
[12] 林婷婷;蒋川东;齐鑫;史文龙;段清明;林君. 地面磁共振测深分布式探测方法与关键技术[J]. 地球物理学报, 2013, 56(11): 3651-3662.
[13] 肖立志;谢庆明;谢然红;潘卫国. 核磁共振测井的正则化-启发式阈值降噪研究[J]. 地球物理学报, 2013, 56(11): 3943-3952.
[14] 杨思通;程久龙. 煤巷小构造Rayleigh型槽波超前探测数值模拟[J]. 地球物理学报, 2012, 55(2): 655-662.
[15] 谭茂金;邹友龙. (T2,D)二维核磁共振测井混合反演方法与参数影响分析[J]. 地球物理学报, 2012, 55(2): 683-629.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!