地球物理学报 ›› 2017, Vol. 60 ›› Issue (10): 4105–4116.doi: 10.6038/cjg20171035

• 九寨沟地震专栏 • 上一篇    下一篇

2017年九寨沟MS7.0级地震震源过程反演与烈度估计

张旭1, 冯万鹏2, 许力生1, 李春来1   

  1. 1. 中国地震局地球物理研究所, 北京 100081;
    2. Canada Center for Mapping and Earth Observation, Natural Resources Canada, Ottawa, K1A0E4
  • 收稿日期:2017-08-28 修回日期:2017-09-08 出版日期:2017-10-05
  • 通讯作者: 许力生,男,研究员,主要从事地震学研究.E-mail:xuls@cea-igp.ac.cn E-mail:xuls@cea-igp.ac.cn
  • 作者简介:张旭,男,助理研究员,主要从事震源运动学和几何学研究.E-mail:ahbbhyzx@163.com
  • 基金资助:
    四川省九寨沟MS7.0级地震科学研究—主震震源特性及影响场专题,中国地震局地球物理研究所基本业务费(DQJB16B05)联合资助.

The source-process inversion and the intensity estimation of the 2017 MS7.0 Jiuzhaigou earthquake

ZHANG Xu1, FENG Wan-Peng2, XU Li-Sheng1, LI Chun-Lai1   

  1. 1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China;
    2. Canada Center for Mapping and Earth Observation, Natural Resources Canada, Ottawa, K1A0E4
  • Received:2017-08-28 Revised:2017-09-08 Online:2017-10-05

摘要: 2017年8月8日,在我国四川省九寨沟县发生一次MS7.0级地震.在快速响应的基础上,重新筛选远场地震波形资料并收集覆盖震中区的InSAR资料对主震的震源破裂过程重新进行了反演分析,收集震后约13 h的余震震相数据对余震进行了双差定位,并基于此对发震断层的复杂性进行了讨论,提出了有待进一步研究的问题.最后,利用反演得到的有限动态破裂模型对地震烈度进行了估计.

关键词: 九寨沟MS7.0地震, 联合反演, 余震双差定位, 震源复杂性, 地震烈度

Abstract: An MS7.0 earthquake occurred in Jiuzhaigou, a county in Sichuan province, China, on Aug.8,2017. Based on the quick response, the source process of the mainshock was analyzed with the inversion technique using the re-selected teleseismic waveform data and the newly-collected InSAR data, and the aftershocks were relocated with the DD-technique using the newly-collected phase data of the aftershocks within the first 13 hours. A meaningful discussion on the complexity of the seismogenic fault(s) was undertaken with the existing observations, and a few of the unsolved questions to be answered in coming research were posed as well. Finally, the intensity distribution was estimated using the inverted kinematic and finite models.

Key words: 2017 MS7.0 Jiuzhaigou earthquake, Joint inversion, DD-relocation of the aftershocks, Source complexity, Seismic intensity

中图分类号: 

  • P315
Antolik M, Dreger D S. 2003. Rupture Process of the 26 January 2001 MW7.6 Bhuj, India, Earthquake from Teleseismic Broadband Data. Bull. Seismol. Soc. Am., 93(3):1235-1248.
Chen Y T, Xu L S. 2000. A time-domain inversion technique for the tempo-spatial distribution of slip on a finite fault plane with applications to recent large earthquakes in the Tibetan Plateau. Geophys. J. Int., 143(2):407-416.
China Earthquake Administration. 2017. http://www.cea.gov.cn/publish/dizhenj/464/476/20170812212207031213560/index.html[2017-09-08].
Fang L H, Wang W L, Yang T. 2017. http://www.cea-igp.ac.cn/tpxw/275883.html[2017-09-08].
Feng W, Omari K, Samsonov S V. 2016. An automated insar processing system:potentials and challenges. 2016 IEEE International Geoscience & Remote Sensing Symposium, Beijing, China:IEEE, 3209-3210, doi:10.1109/IGARSS.2016.7729830.
Feng W, Tian Y, Zhang Y, et al. 2017a. A Slip Gap of the 2016 MW6.6 Muji, Xinjiang, China, Earthquake Inferred from Sentinel-1 TOPS Interferometry. Seismol. Res. Lett., 88(4):1054-1064.
Feng W, Samsonov S, Tian Y, et al. 2017b. Surface deformation associated with the 2015 MW8.3 Illapel earthquake revealed by satellite-based geodetic observations and its implications for the seismic cycle. Earth Planet. Sci. Lett., 460:222-233.
Gusman A R, Murotani S, Satake K, et al. 2015. Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophys. Res. Lett., 42(4):1053-1060.
Hartzell S H, Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am., 73(6A):1553-1583.
Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1):108-124.
Lay, T, Ammon C J, Hutko A R, et al. 2010. Effects of Kinematic Constraints on Teleseismic Finite-Source Rupture Inversions:Great Peruvian Earthquakes of 23 June 2001 and 15 August 2007. Bull. Seismol. Soc. Am., 100(3):969-994.
Luo Y J, Zhao L. 2017. http://tec.earth.sinica.edu.tw/new_web/upload/news/EQfile/2017-08-08_M6.5.pdf[2017-09-08].
Shan X J, Qu C Y, Gong W Y, et al. 2017. http://www.eq-igl.ac.cn/upload/files/2017/8/15151711397.pdf[2017-09-08].
Simons M, Fialko Y, Rivera L. 2002. Coseismic Deformation from the 1999 MW7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations. Bull. Seismol. Soc. Am., 92(4):1390-1402.
Wald D J, Quitoriano V, Heaton T H, et al. 1999a. Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthquake Spectra, 15(3):557-564.
Wald D J, Quitoriano V, Dengler L A, et al. 1999b. Utilization of the Internet for rapid community intensity maps. Seismol. Res. Lett., 70(6):680-697.
Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm:method and application to the northern hayward fault, California. Bull. Seismol. Soc. Am., 90(6):1353-1368.
Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions. Bull. Seismol. Soc. Am., 89(3):733-741.
Wang R J, Martín F L, Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust-FORTRAN programs EDGRN/EDCMP. Computers & Geosciences, 29(2):195-207.
Wang W M, He J K, Hao J L, et al. 2017. http://www.itpcas.ac.cn/xwzx/zhxw/201708/t20170809_4840737.html[2017-09-08].
Ward S N, Barrientos S E. 1986. An inversion for slip distribution and fault shape from geodetic observations of the 1983, Borah Peak, Idaho, Earthquake. J. Geophys. Res., 91(B5):4909-4919.
Xu L S, Chen Y T, Teng T L, et al. 2002. Temporal-Spatial Rupture Process of the 1999 Chi-Chi Earthquake from IRIS and GEOSCOPE Long-Period Waveform Data Using Aftershocks as Empirical Green's Functions. Bull. Seismol. Soc. Am., 92(8):3210-3228.
Xu L S, Zhang X, Wei Q, et al. 2016. A method for estimating the earthquake intensity caused by a finite-dynamic source. Chinese J. Geophys.(in Chinese), 59(10):3684-3695, doi:10.6038/cjg20161015.
Yagi Y, Mikumo T, Pacheco J, et al. 2004. Source Rupture Process of the Tecomán, Colima, Mexico Earthquake of 22 January 2003, Determined by Joint Inversion of Teleseismic Body-Wave and Near-Source Data. Bull. Seismol. Soc. Am., 94(5):1795-1807.
Zhang X. 2016. Study on new methods for analysis of the complexity of source rupture process based on apparent source time functions[Ph. D. thesis] (in Chinese). Beijing:Institute of Geophysics, China Earthquake Administration.
Zhang Y, Feng W, Chen Y T, et al. 2012. The 2009 L'Aquila MW6.3 earthquake:a new technique to locate the hypocentre in the joint inversion of earthquake rupture process. Geophys. J. Int., 191(3):1417-1426.
Zhang Y, Xu L S, Chen Y T. 2017. http://www.cea-igp.ac.cn/tpxw/275883.html[2017-09-08].
Zhou S, Irikura K, Chen X. 2004. Analysis of the reliability and resolution of the earthquake source history inferred from waveforms, taking Chi-Chi earthquake as an example. Geophys. J. Int., 157(3):1217-1232.
房立华, 王未来, 杨婷. 2017. http://www.cea-igp.ac.cn/tpxw/275883.html[2017-09-08].
罗翊菁, 赵里. 2017. http://tec.earth.sinica.edu.tw/new_web/upload/news/EQfile/2017-08-08_M6.5.pdf[2017-09-08].
单新建, 屈春燕, 龚文瑜等. 2017. http://www.eq-igl.ac.cn/upload/files/2017/8/15151711397.pdf[2017-09-08].
王卫民, 何建坤, 郝金来等. 2017. http://www.itpcas.ac.cn/xwzx/zhxw/201708/t20170809_4840737.html[2017-09-08].
许力生, 张旭, 魏强等. 2016. 一种基于有限动态源的烈度估计方法. 地球物理学报,59(10):3684-3695, doi:10.6038/cjg20161015.
张旭. 2016. 基于视震源时间函数的震源过程复杂性分析新方法研究[博士论文].北京:中国地震局地球物理研究所.
张勇, 许力生, 陈运泰. 2017. http://www.cea-igp.ac.cn/tpxw/275883.html[2017-09-08].
中国地震局. 2017. http://www.cea.gov.cn/publish/dizhenj/464/476/20170812212207031213560/index.html[2017-09-08].
[1] 张正一;范建柯;白永良;董冬冬. 中国海-西太平洋地区典型剖面的重-磁-震联合反演研究[J]. 地球物理学报, 2018, 61(7): 2871-2891.
[2] 温少妍;单新建;张国宏;张迎峰;屈春燕;赵德政;李彦川. 基于InSAR和远场地震波联合反演2008年MW6.3大柴旦地震震源破裂过程[J]. 地球物理学报, 2018, 61(6): 2301-2309.
[3] 杨溢;常利军. 2017年九寨沟MS7.0地震震源区横波分裂变化特征[J]. 地球物理学报, 2018, 61(5): 2088-2098.
[4] 郑晨;丁志峰;宋晓东. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构[J]. 地球物理学报, 2018, 61(4): 1211-1224.
[5] 王彦飞;唐静;耿伟峰;王成祥. 带粒子滤波约束的PP-PS联合反演的稀疏解算法[J]. 地球物理学报, 2018, 61(3): 1169-1177.
[6] 殷长春;孙思源;高秀鹤;刘云鹤;陈辉. 基于局部相关性约束的三维大地电磁数据和重力数据的联合反演[J]. 地球物理学报, 2018, 61(1): 358-367.
[7] 叶秀薇;邓志辉;黄元敏;刘吉平;王小娜;刘锦;谭争光. 新丰江水库中上地壳P波三维速度结构特征及库水的渗透影响[J]. 地球物理学报, 2017, 60(9): 3432-3444.
[8] 高级;张海江;方洪健;李楠. 一种高效的基于交叉梯度结构约束的三维地震走时与直流电阻率联合反演策略[J]. 地球物理学报, 2017, 60(9): 3628-3641.
[9] 刘刚;杨少敏;师宏波;聂兆生;熊维;王迪晋;李恒;周宇;乔学军;谭凯;王琪. 2015年尼泊尔地震破裂过程的统一模型[J]. 地球物理学报, 2017, 60(7): 2663-2679.
[10] 赵宏阳;陈晓非. 1975年海城MS7.3地震强地面运动模拟[J]. 地球物理学报, 2017, 60(7): 2707-2715.
[11] 李红蕾;方剑;王新胜;刘杰;崔荣花;陈铭. 重力及重力梯度联合反演青藏高原及邻区岩石圈三维密度结构[J]. 地球物理学报, 2017, 60(6): 2469-2479.
[12] 宋丽蓉;于常青;郑绵平;陈文西;王永智;何俊杰;李桂花;钱鹏. 利用地球物理方法探测火山沉积型硼矿——在西藏阿里地区的应用[J]. 地球物理学报, 2017, 60(4): 1584-1594.
[13] 潘岳怡;俞言祥;肖亮. 中国地震烈度评定值的统计检验[J]. 地球物理学报, 2017, 60(2): 593-603.
[14] 林婷婷;林小雪;杨卓静;万玲;赵静;张晓飞;郝文杰;张青. 地面磁共振与瞬变电磁横向约束联合反演方法研究[J]. 地球物理学报, 2017, 60(2): 833-842.
[15] 王笋;丘学林;赵明辉;闫培;陈新泽;李普春;方伟华. 长乐-南澳断裂带两侧地壳结构差异的地震-重力联合反演[J]. 地球物理学报, 2017, 60(10): 3853-3862.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!