地球物理学报 ›› 2017, Vol. 60 ›› Issue (7): 2680–2692.doi: 10.6038/cjg20170715

• 地球动力学·地震学 • 上一篇    下一篇

智利MW8.3地震与MW8.8地震的震源过程及其引起的库仑应力特征

林鑫1,2, 郝金来2, 姚振兴2   

  1. 1. 华中科技大学地球物理研究所, 华中科技大学物理学院, 武汉 430074;
    2. 中国科学院地质与地球物理研究所, 地球与行星物理重点实验室, 北京 100029
  • 收稿日期:2016-12-05 修回日期:2017-05-12 出版日期:2017-07-05
  • 作者简介:林鑫,男,1988年生,博士,主要从事地震破裂过程等相关研究.E-mail:alyssalinxin@163.com
  • 基金资助:
    国家自然科学基金项目(41574058,41630210和41230317)资助.

Rupture process and Coulomb stress change of the MW8.3 earthquake and the MW8.8 earthquake, Chile

LIN Xin1,2, HAO Jin-Lai2, YAO Zhen-Xing2   

  1. 1. Institute of Geophysics, Huazhong University of Science and Technology, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2016-12-05 Revised:2017-05-12 Online:2017-07-05

摘要: 2015年9月17日6时54分32秒(北京时间)智利中部伊拉佩尔附近(震中31.57°S,71.67°W)发生了一次MW8.3大地震,在此次地震震中以南约500 km处的马乌莱地区曾于2010年2月27日14时34分11秒发生过一次MW8.8强震(震中36.12°S,72.90°W),两次地震余震分布区之间有约75 km的地震空区.本文利用远场体波与面波波形,基于有限断层模型,反演了这两次地震的震源破裂过程.结果显示这两次地震均为逆冲型大地震,2015年伊拉佩尔MW8.3地震的平均滑动角度为107°,平均滑动量为2.43 m,平均破裂速度为1.82 km·s-1,标量地震矩为3.28×1021Nm,95%的标量地震矩在104 s内得到了释放.最大滑动量约8 m,位于沿走向75 km,深度8 km处.2010年马乌莱MW8.8地震的平均滑动角度为109°,平均滑动量为4.95 m,平均破裂速度1.90 km·s-1,标量地震矩为1.86×1022Nm,95%的标量地震矩在121 s内得到了释放.最大滑动量约12.5 m,位于沿走向100 km,深度21 km处.2015年伊拉佩尔MW8.3地震浅部更大的滑动量应该是其引起了较大海啸的一个原因.基于破裂滑动分布,我们计算了这两次地震引起的周边俯冲带上静态库仑应力变化,结果显示两次地震均显著增加了周边俯冲带上的库仑应力,2010年马乌莱地震使得2015年伊拉佩尔地震震源区附近的库仑应力增加了(0.01~0.15)×105Pa,从应力积累的角度看,2010年马乌莱地震有利于2015年伊拉佩尔地震的发生,对后者的发生起到了促进作用.

关键词: 智利伊拉佩尔地震, 智利马乌莱地震, 有限断层模型, 波形反演, 震源破裂过程, 静态库仑应力变化

Abstract: On 17 September 2015 (Beijing Time), a great (MW8.3) earthquake ruptured offshore Illapel (31.57°S,71.67°W),central Chile, and a MW8.8 earthquake occurred in Maule (36.12°S,72.90°W) on 27 February, 2010 which ruptured about 500 km to the south of the 2015 Illapel earthquake, it is a remarkable fact that a seismic gap about 75 km between two aftershocks zones for the two events. The rupture processes of the two events are investigated by finite fault model using far field broadband body waves and surface waves records. The results indicate that two events are thrust earthquakes, the average rake, average slip, rupture duration, average rupture velocity and moment tensor for the 2015 Illapel earthquake are 107°, 2.43 m, 104 s, 1.82 km·s-1 and 3.28×1021Nm, respectively, and with a peak slip of 8 m which located in 75 km (along strike) and 8 km in depth; the average rake, average slip, rupture duration, average rupture velocity and moment tensor for the 2010 Maule earthquake are 109°,4.95 m, 121 s, 1.90 km·s-1 and 1.86×1022Nm, respectively, and with a peak slip of 12.5 m which located in 100 km (along strike) and 21 km in depth. The 2015 Illapel MW8.3 earthquake generates a larger tsunami, on account of the larger shallow slip. Based on the rupture distribution, we calculate the static Coulomb stress change for the two events and shows that both of them makes an increase in the average stress, furthermore, the increased stress in source region of the 2015 Illapel earthquake caused by the 2010 Maule event is (0.01~0.15)×105 Pa, that may indicate a promotion from the 2010 Maule earthquake leading to the 2015 MW8.3 Illapel earthquake.

Key words: Illapel earthquake, Chile, Maule earthquake, Chile, Finite-fault model, Waveform inversion, Rupture process of source, Static Coulomb stress change

中图分类号: 

  • P315
Beck S, Barrientos S, Kausel E, et al. 1998. Source characteristics of historic earthquakes along the central Chile subduction Askew et alzone. Journal of South American Earth Sciences, 11(2):115-129.
Brooks B A, Bevis M, Smalley R Jr, et al. 2003. Crustal motion in the Southern Andes (26~36°S):Do the Andes behave like a microplate? Geochemistry, Geophysics, Geosystems, 4(10):1085, doi:10.1029/2003GC000505.
Cocco M, Rice J R. 2002. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. Journal of Geophysical Research, 107(B2):ESE 2-1-ESE 2-17, doi:10.1029/2000JB000138.
Comte D, Pardo M. 1991. Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Natural Hazards, 4(1):23-44.
Delouis B, Nocquet J M, Vallée M. 2010. Slip distribution of the February 27, 2010 MW=8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37(17):L17305, doi:10.1029/2010GL043899.
DeMets C, Gordon R G, Argus D F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1):1-80.
Haberland C, Rietbrock A, Lange D, et al. 2009. Structure of the seismogenic zone of the southcentral Chilean margin revealed by local earthquake traveltime tomography. Journal of Geophysical Research, 114(B1):B01317, doi:10.1029/2008JB005802.
Hartzell S H, Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6):1553-1583.
Heidarzadeh M, Murotani S, Satake K, et al. 2016. Source model of the 16 September 2015 Illapel, Chile, MW8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 43(2):643-650, doi:10.1002/2015GL067297.
Ji C, Wald D J, Helmberger D V. 2002. Source description of the 1999 Hector Mine, California, earthquake, part I:Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92(4):1192-1207.
Kanamori H. 1977. The energy release in great earthquakes. Journal of Geophysical Research, 82(20):2981-2987.
King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3):935-953.
Lay T, Ammon C J, Kanamori H, et al. 2010. Teleseismic inversion for rupture process of the 27 February 2010 Chile (MW 8.8) earthquake. Geophysical Research Letters, 37(13):L13301, doi:10.1029/2010GL043379.
Lay T, Yue H, Brodsky E E, et al. 2014. The 1 April 2014 Iquique, Chile, MW8.1 earthquake rupture sequence. Geophysical Research Letters, 41(11):3818-3825.
Liu C L, Zheng Y, Ge C, et al. 2013. Rupture Process of the Ms7.0 Lushan Earthquake. Science China Earth Sciences, 56(7):1187-1192, doi:10.1007/s11430-013-4639-9.
Liu C L, Zheng Y, Wang R J, et al. 2015. Kinematic rupture process of the 2014 Chile MW8.1 earthquake constrained by strong-motion, GPS static offsets and teleseismic data. Geophysical Journal International, 202(2):1137-1145.
Lomnitz C. 2004. Major earthquakes of Chile:a historical survey, 1535-1960. Seismological Research Letters, 75(3):368-378.
Ma K F, Chan C H, Stein R S. 2005. Response of seismicity to Coulomb stress triggers and shadows of the 1999 MW=7.6 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research, 110(B5):B05S19, doi:10.1029/2004JB003389.
MéTois M, Socquet A, Vigny C. 2012. Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research, 117(B3):B03406, doi:10.1029/2011JB008736.
Moreno M, Rosenau M, Oncken O. 2010. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312):198-202.
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4):1135-1154.
Shao G F, Li X Y, Ji C, et al. 2011. Focal mechanism and slip history of the 2011 MW9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth, Planets and Space, 63(7):559-564.
Stein R S, King G C P, Lin J. 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude=7.4 Landers earthquake. Science, 258(5086):1328-1332.
Toda S, Stein R S, Reasenberg P A, et al. 1998. Stress transferred by the 1995 MW=6.9 Kobe, Japan, shock:Effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research:Solid Earth, 103(B10):24543-24565, doi:10.1029/98JB00765.
Vigny C, Socquet A, Peyrat S, et al. 2011. The 2010 MW8.8 Maule megathrust earthquake of Central Chile, monitored by GPS. Science, 332(6036):1417-1421.
Wang K L. 2015. Subduction faults as We see them in the 21st Century.//AGU Fall Meeting Abstracts. Washington:AGU.
Wang W M, Zhao L F, Li J, et al. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(5):1403-1410, doi:10.3321/j.issn:0001-5733.2008.05.013.
Yao Z X, Ji C. 1997. The inverse problem of finite fault study in time domain. Chinese Journal of Geophysics (in Chinese), 40(5):691-701.
Ye L L, Lay T, Kanamori H, et al. 2016. Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile MW8.3 earthquake. Pure and Applied Geophysics, 173(2):321-332.
Zhang Y, Xu L S, Chen Y T. 2013. Rupture process of the Lushan 4.20 earthquake and preliminary analysis on the disaster-causing mechanism. Chinese Journal of Geophysics (in Chinese), 56(4):1408-1411, doi:10.6038/cjg20130435.
刘成利, 郑勇, 葛粲等. 2013. 2013年芦山7.0级地震的动态破裂 过程. 中国科学:地球科学, 43(6):1020-1026.
王卫民, 赵连锋, 李娟等. 2008. 四川汶川8.0级地震震源过程. 地球物理学报, 51(5):1403-1410, doi:10.3321/j.issn:0001-5733.2008.05.013.
姚振兴, 纪晨. 1997. 时间域内有限地震断层的反演问题. 地球物理学报, 40(5):691-701.
张勇, 许力生, 陈运泰. 2013. 芦山4.20地震破裂过程及其致灾特征初步分析. 地球物理学报, 56(4):1408-1411, doi:10.6038/cjg20130435.
[1] 胡勇;韩立国;于江龙;陈瑞鼎. 基于自适应非稳态相位校正的时频域多尺度全波形反演[J]. 地球物理学报, 2018, 61(7): 2969-2988.
[2] 温少妍;单新建;张国宏;张迎峰;屈春燕;赵德政;李彦川. 基于InSAR和远场地震波联合反演2008年MW6.3大柴旦地震震源破裂过程[J]. 地球物理学报, 2018, 61(6): 2301-2309.
[3] 王志强;韩立国. 基于Hinge损失函数的垂向全变差约束全波形反演[J]. 地球物理学报, 2018, 61(4): 1460-1470.
[4] 张盼;韩立国;巩向博;孙宏宇;毛博. 基于各向异性全变分约束的多震源弹性波全波形反演[J]. 地球物理学报, 2018, 61(2): 716-732.
[5] 陈生昌;陈国新. 多主频波场的时间阻尼全波形反演[J]. 地球物理学报, 2017, 60(8): 3229-3237.
[6] 郑傲;王铭锋;章文波. 利用近场强震记录反演2016年日本熊本县地震震源破裂过程[J]. 地球物理学报, 2017, 60(5): 1713-1724.
[7] 缪淼;朱守彪. 流-固耦合作用对计算同震静态库仑应力变化的影响[J]. 地球物理学报, 2017, 60(4): 1457-1469.
[8] 胡勇;韩立国;许卓;张天泽. 基于精确震源函数的解调包络多尺度全波形反演[J]. 地球物理学报, 2017, 60(3): 1088-1105.
[9] 桂生;刘洪;张玉洁. 简化混合域全波形反演多GPU加速策略[J]. 地球物理学报, 2017, 60(2): 665-677.
[10] 崔永福;彭更新;吴国忱;尚帅;郭念民;赵锐锐. 全波形反演在缝洞型储层速度建模中的应用[J]. 地球物理学报, 2016, 59(7): 2713-2725.
[11] 王本锋;吴如山;陈小宏;陆文凯. 基于T-matrix的非线性参数估计方法[J]. 地球物理学报, 2016, 59(6): 2257-2265.
[12] 孟旭;刘四新;傅磊;王宪楠;刘新彤;王文天;蔡佳琪. 基于对数目标函数的跨孔雷达频域波形反演[J]. 地球物理学报, 2016, 59(5): 1875-1887.
[13] 杨积忠;刘玉柱;董良国. 基于Born敏感核函数的速度、密度双参数全波形反演[J]. 地球物理学报, 2016, 59(3): 1082-1094.
[14] 刘四新;孟旭;傅磊. 不依赖源子波的跨孔雷达时间域波形反演[J]. 地球物理学报, 2016, 59(12): 4473-4482.
[15] 危自根;储日升;陈凌;崇加军;李志伟. 复杂地壳接收函数H-κ叠加——以安纳托利亚板块为例[J]. 地球物理学报, 2016, 59(11): 4048-4062.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!