地球物理学报 ›› 2017, Vol. 60 ›› Issue (2): 489–498.doi: 10.6038/cjg20170204

• 空间物理学·大地测量学 • 上一篇    下一篇

日侧极光弧的发光强度与沉降电子能谱的相关关系

丘琪1,2, 杨惠根2, 陆全明1, 胡泽骏2   

  1. 1. 中国科学技术大学地球和空间科学学院, 中国科学院近地空间环境重点实验室, 合肥 230026;
    2. 中国极地研究中心国家海洋局极地科学重点实验室, 上海 200136
  • 收稿日期:2016-04-27 修回日期:2016-12-29 出版日期:2017-02-05
  • 通讯作者: 杨惠根,E-mail:huigen_yang@pric.org.cn E-mail:huigen_yang@pric.org.cn
  • 作者简介:丘琪,男,1985年生,博士,研究方向为极光物理.E-mail:ariesgreen@163.com
  • 基金资助:
    国家自然科学基金重点项目(41431072)和面上项目(41274164,41504115),南北极环境综合考察与评估专项(CHINARE2016-02-03,CHINARE2016-04-01),中国科学院战略性先导科技专项(XDA04060201),浦东新区科技发展基金(Pkj2013-z01),国家海洋局极地科学重点实验室开放基金(KP201303)和中组部青年拔尖人才计划项目共同资助.

Correlation between emission intensities in dayside auroral arcs and precipitating electron spectra

QIU Qi1,2, YANG Hui-Gen2, LU Quan-Ming1, HU Ze-Jun2   

  1. 1. CAS Key Laboratory of Geoscience Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026, China;
    2. SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China
  • Received:2016-04-27 Revised:2016-12-29 Online:2017-02-05

摘要: 本文利用中国北极黄河站多波段全天空极光观测数据,选取稳定的日侧极光弧,统计研究了极光强度比I557.7/I630.0与极光发光强度I557.7的相关关系.发现I557.7在午前暖点和午后热点区附近出现极大值,分别为2.2 kR和2.9 kR;而I630.0在磁正午出现极大值,为1.5 kR.当I557.7从0.1 kR增加到10 kR时,极光强度比I557.7/I630.0也由0.2增加到9.结合DMSP卫星探测的沉降粒子能谱数据,找到17个DMSP卫星穿越黄河站上空极光弧的事件,共穿越40条极光弧.得到了沉降电子的平均能量正比于极光强度比I557.7/I630.0,沉降电子的总能通量正相关于极光强度I557.7的关系式.利用该关系式反演所有极光弧的电子能谱,发现在午前和午后扇区,产生极光弧的沉降电子主要来源于等离子体片边界层;在高纬出现强度较弱的弧,对应等离子体幔区域.在磁正午附近,沉降电子的平均能量较低,极光弧处于低纬一侧,粒子源区主要是低纬边界层.

关键词: 日侧极光弧, 极光发光强度, 电子沉降, 等离子体片边界层, 低纬边界层

Abstract: More than 20,000 dayside auroral arcs of the 557.7 and 630.0 nm emission intensities have been statistically studied, and the dependences of the I557.7/I630.0 ratio on the I557.7 emission intensity have been determined. The 557.7 nm emission intensity has two maximum values in the hot spot and warm spot regions, with average values of 2.2 and 2.9 kR, respectively. But there is a maximum near magnetic noon for 630.0 nm emission intensity, with an average value of 1.5 kR. In the I557.7 emission range 0.1~10 kR, the I557.7/I630.0 ratio tends to increase from 0.2 to 9. The correlation between the emission intensity and precipitating electron spectra have been investigated using 17 cases of DMSP passing through 40 auroral arcs above the Chinese Arctic Yellow River Station (YRS). We obtain the equations that the average energy of the electrons is proportional to the I557.7/I630.0 ratio. There is a positive correlation between the total energy flux of the electrons and the I557.7 emission intensity. The typical region of electron precipitation, which the auroral arcs were observed, was BPS (boundary plasma sheet) in the prenoon and postnoon sectors. We also found some low-energy precipitating electrons from the region of mantle, where the arcs are located poleward of dayside auroral oval. The magnetic source region of the precipitating electrons with low energy was identified as the LLBL (low latitude boundary layer) adjacent to magnetic noon. Arcs are located at the lower latitude in this region.

Key words: Dayside auroral arc, Auroral emission intensity, Electron precipitation, BPS, LLBL

中图分类号: 

  • P351
Ashrafi M, Kosch M J, Honary F. 2005. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data. Annales Geophysicae, 23(1):135-145.
Chamberlain J W. 1995. Physics of the Aurora and Airglow. Washington D. C.:American Geophysical Union.
Christensen A B, Lyons L R, Hecht J H, et al. 1987. Magnetic field-aligned electric field acceleration and the characteristics of the optical aurora. Journal of Geophysical Research, 92(A6):6163-6167.
Dashkevich Z V, Zverev V L, Ivanov V E. 2006. Ratios of the I630.0/I427.8 and I557.7/I427.8 emission intensities in auroras. Geomagnetism and Aeronomy, 46(3):366-370.
Eastman T E, Frank L A, Peterson W K, et al. 1984. The plasma sheet boundary layer. Journal of Geophysical Research, 89(A3):1553-1572.
Eather R H. 1969. Latitudinal distribution of auroral and airglow emissions:The ‘Soft’ Auroral Zone. Journal of Geophysical Research, 74(1):153-158.
Eather R H, Mende S B. 1972. Systematics in auroral energy spectra. Journal of Geophysical Research, 77(4):660-673.
Gattinger R L, Jones A V. 1972. The intensity ratios of auroral emission features. Annales De Géophysique, 28(1):91-97.
Hardy D A, Holeman E G, Burke W J, et al. 2008. Probability distributions of electron precipitation at high magnetic latitudes. Journal of Geophysical Research Space Physics, 113(A6):A06305, doi:10.1029/2007JA012746.
Hu Z J, Yang H G, Ai Y, et al. 2005. Multiple wavelengths observation of dayside auroras in visible range-A Preliminary Result of the First Wintering Aurora Observation in Chinese Arctic Station at Ny-Ålesund. Chinese Journal of Polar Research (in Chinese), 17(2):107-114.
Hu Z J, Yang H, Huang D, et al. 2009. Synoptic distribution of dayside aurora:Multiple-wavelength all-sky observation at Yellow River Station in Ny-Ålesund, Svalbard. Journal of Atmospheric and Solar-Terrestrial Physics, 71(8-9):794-804.
Hu Z J, Ebihara Y, Yang H G, et al. 2014. Hemispheric asymmetry of the structure of dayside auroral oval. Geophysical Research Letters, 41(24):8696-8703.
Jones A V. 1974. Aurora. Dordrecht:D. Reidel Publishing Company.
Jones A V, Gattinger R L, Shih P, et al. 1987. Optical and radar characterization of a short-lived auroral event at high latitude. Journal of Geophysical Research, 92(A5):4575-4589.
Lassen K, Danielsen C. 1978. Quiet time pattern of auroral arcs for different directions of the interplanetary magnetic field in the Y-Z plane. Journal of Geophysical Research, 83(A11):5277-5284.
Li L Y, Cao J B, Zhou G C, et al. 2011. Multiple responses of magnetotail to the enhancement and fluctuation of solar wind dynamic pressure and the southward turning of interplanetary magnetic field. Journal of Geophysical Research, 116:A12223, doi:10.1029/2011JA016816.
Liou K, Newell P T, Meng C I. 1997. Synoptic auroral distribution:A survey using Polar ultraviolet imagery. Journal of Geophysical Research, 102(A12):27197-27205.
Liou K, Newell P T, Meng C I, et al. 1999. Source region of 1500 MLT auroral bright spots:Simultaneous Polar UV-images and DMSP particle data. Journal of Geophysical Research, 104(A11):24587-24602.
Meng C I, Rycroft M J, Frank L A. 1991. Auroral Physics. New York:Cambridge University Press.
Newell P T, Meng C I. 1988. The cusp and the cleft/boundary layer:Low-altitude identification and statistical local time variation. Journal of Geophysical Research, 93(A12):14549-14556.
Newell P T, Burke W J, Meng C I, et al. 1991a. Identification and observations of the plasma mantle at low altitude. Journal of Geophysical Research, 96(A1):35-45.
Newell P T, Burke W J, Sánchez E R, et al. 1991b. The low-latitude boundary layer and the boundary plasma sheet at low altitude:Prenoon precipitation regions and convection reversal boundaries. Journal of Geophysical Research, 96(A12):21013-21023.
Newell P T, Lylons K M, Meng C I. 1996. A large survey of electron acceleration events. Journal of Geophysical Research, 101(A2):2599-2614.
Paschmann G, Haaland S, Treumann R A. 2002. Auroral plasma physics. Space and Science Reviews, 103(1-4):21-40.
Qiu Q, Yang H G, Lu Q M, et al. 2013. Widths of dayside auroral arcs observed at the Chinese Yellow River Station. Journal of Atmospheric and Solar-Terrestrial Physics, 102:222-227.
Rees M H. 1963. Auroral ionization and excitation by incident energetic electrons. Planetary and Space Science, 11(10):1209-1218.
Rees M H, Luckey D. 1974. Auroral electron energy derived from ratio of spectroscopic emissions 1. Model computations. Journal of Geophysical Research, 79:5181-5186.
Rees M H, Roble R G. 1986. Excitation of O(1D) atoms in aurorae and emission of the[OI] 6300-Å line. Canadian Journal of Physics, 64(12):1608-1613.
Sandholt P E, Carlson H C, Egeland A. 2002. Dayside and Polar Cap Aurora. Dordrecht:Kluwer Academic Publishers.
Sckopke N, Paschmann G, Haerendel G, et al. 1981. Structure of the low-latitude boundary layer. Journal of Geophysical Research, 86(A4):2099-2110.
Xing Z Y, Yang H G, Wu Z S, et al. 2013. A parameter model of auroral emissions and particle precipitation near magnetic noon. Chinese Journal of Geophysics (in Chinese), 56(7):2163-2170, doi:10.6038/cjg20130703.
Yang H G, Liu R Y, Huang D H, et al. 1997. An all-sky auroral video image analyzing system. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 40(5):606-615.
Yang H, Sato N, Makita K, et al. 2000. Synoptic observations of auroras along the postnoon oval:a survey with all-sky TV observations at Zhongshan, Antarctica. Journal of Atmospheric and Solar-Terrestrial Physics, 62(9):787-797.
附中文参考文献
胡泽骏, 杨惠根, 艾勇等. 2005. 日侧极光卵的可见光多波段观测特征——中国北极黄河站首次极光观测初步分析. 极地研究, 17(2):107-114.
邢赞扬, 杨惠根, 吴振森等. 2013. 磁正午附近极光强度与沉降粒子能量关系的参数模型. 地球物理学报, 56(7):2163-2170, doi:10.6038/cjg20130703.
杨惠根, 刘瑞源, 黄德宏等. 1997. 极光全天空视频图像分析系统. 地球物理学报, 40(5):606-615.
[1] 巴金;胡雄;闫召爱;郭商勇;程永强;杨钧烽. 廊坊地区中间层顶钠原子垂直动力学输送特征观测分析[J]. 地球物理学报, 2018, 61(2): 449-457.
[2] 王泽龙;杨国韬;王继红;焦菁;杜丽芳;荀宇畅;刘星. 中层顶区域钾层静态模型的初步建立[J]. 地球物理学报, 2018, 61(2): 458-465.
[3] 荀宇畅;杨国韬;王继红;杜丽芳;焦菁;王泽龙;程学武;王赤. 2011年5月26日北京上空TeSL与Es、大气风场的同时观测[J]. 地球物理学报, 2017, 60(11): 4390-4397.
[4] 李若曦;雷久侯. 基于经验模式给定热层温度对热层大气密度反演影响的评估[J]. 地球物理学报, 2017, 60(8): 3015-3022.
[5] 巴金;胡雄;闫召爱;郭商勇;程永强. 中间层顶重力波耗散引起钠原子输送的激光雷达观测研究[J]. 地球物理学报, 2017, 60(2): 499-506.
[6] 王慧;张科灯;万欣. 中纬热层大气质量密度经向结构差异研究[J]. 地球物理学报, 2016, 59(10): 3573-3579.
[7] 肖存英;胡雄;王博;杨钧烽. 临近空间大气扰动变化特性的定量研究[J]. 地球物理学报, 2016, 59(4): 1211-1221.
[8] 欧明;甄卫民;刘裔文;邓忠新;熊雯;徐继生. 一种基于LEO卫星信标的电离层层析成像新算法[J]. 地球物理学报, 2015, 58(10): 3469-3480.
[9] 邹旭;杨国韬;王继红;龚少华;程学武;岳川;张铁民;傅军. 基于激光雷达手段的海南地区重力波与其波谱的季节分布特性研究[J]. 地球物理学报, 2015, 58(7): 2274-2282.
[10] 刘伟军;徐寄遥;袁韡. 北京地区上空OH转动温度的季节性变化[J]. 地球物理学报, 2015, 58(5): 1467-1474.
[11] 李嘉巍;吴媛;张效信;王文斌;周率. 大磁暴期间TIEGCM模式和CHAMP卫星热层大气密度扰动特性的统计研究[J]. 地球物理学报, 2015, 58(3): 709-720.
[12] 梁晨;薛向辉;陈廷娣. 基于COSMIC卫星观测数据的平流层重力波的全球分布特征研究[J]. 地球物理学报, 2014, 57(11): 3668-3678.
[13] 胡国元;艾勇;张燕革;单欣;顾健. 扫描式F-P干涉仪在MERINO观测中的热层风结果与分析[J]. 地球物理学报, 2014, 57(11): 3688-3694.
[14] 胡国元;艾勇;张燕革;刘珏;顾健. 基于全天空F-P干涉仪反演热层垂直中性风[J]. 地球物理学报, 2014, 57(11): 3695-3702.
[15] 牛晓娟;熊建刚;涂亚芳;柯璇. 武汉和阿德莱德大气太阴N2潮及M2潮的对比分析[J]. 地球物理学报, 2014, 57(9): 2743-2750.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!