地球物理学报 ›› 2017, Vol. 60 ›› Issue (1): 11–21.doi: 10.6038/cjg20170102

• 空间物理学·大气物理学·重力与大地测量学 • 上一篇    下一篇

中国华北雾霾天气与超强El Niño事件的相关性研究

袁媛1, 周宁芳2, 李崇银3,4   

  1. 1. 国家气候中心, 中国气象局气候研究开放实验室, 北京 100081;
    2. 国家气象中心, 北京 100081;
    3. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;
    4. 解放军理工大学气象海洋学院, 南京 211101
  • 收稿日期:2016-03-06 修回日期:2016-10-18 出版日期:2017-01-05
  • 通讯作者: 李崇银,男,1940年出生,研究员,主要从事气候变化及其动力学研究.E-mail:lcy@lasg.iap.ac.cn E-mail:lcy@lasg.iap.ac.cn
  • 作者简介:袁媛,女,副研究员,主要从事气候变化及其预测研究.E-mail:yuany@cma.gov.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(2013CB956203,2013CB430203)、国家自然科学基金项目(41490642,41575090)、中国气象局预报预测核心业务发展专项(CMAHX20160401)和公益性气象行业专项(GYHY200906016)共同资助.

Correlation between haze in North China and super El Niño events

YUAN Yuan1, ZHOU Ning-Fang2, LI Chong-Yin3,4   

  1. 1. National Climate Center, Laboratory for Climate Studies, China Meteorological Administration, Beijing 100081, China;
    2. National Meteorological Center, China Meteorological Administration, Beijing 100081, China;
    3. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
    4. Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101, China
  • Received:2016-03-06 Revised:2016-10-18 Online:2017-01-05

摘要: 2015年11-12月,全国接连发生七次大范围、持续性雾霾天气过程,其中,11月27日-12月1日的雾霾天气过程持续时间长达五天,成为2015年最强的一次重污染天气过程;12月19-25日重度雾霾再次发展,影响面积一度达到35.2万km2.本文利用多种数据资料通过个例对比和历史统计详细分析了超强El Niño背景下雾霾天气频发的天气气候条件.其结果清楚表明:2015年11-12月欧亚中高纬度以纬向环流为主,东亚冬季风偏弱,使得影响我国的冷空气活动偏少,我国中东部大部地区对流层低层盛行异常偏南风,大气相对湿度明显偏大,并且大气层结稳定,对流层底层存在明显逆温.上述大气环流条件使得污染物的水平和垂直扩散条件差,因此在有一定污染排放的情况下,造成了重度雾霾天气过程的频发.由此,超强El Niño事件所导致的大尺度大气环流异常是我国中东部,尤其华北地区冬季雾霾天气频发的重要原因之一.

关键词: 超强El Niñ, o, 中国华北, 雾霾, 冬季风, 大气稳定度, 逆温

Abstract: During November-December 2015, seven strong fog and haze events persistently occurred over a large area of eastern China. Of them, the most severe one was from 27 November to 1 December, which lasted for five days or more. The second one was from 19 to 25 December 2015, which covered a large area up to 352000 square kilometers. Using multiple datasets, this study analyzes meteorological and climate conditions for these fog and haze events. The results clearly show that anomalous 500 hPa zonal circulation dominated over mid-high latitudes of Eurasia during November to December 2015, with weak East Asian winter monsoon, weaker cold air activities, and anomalous low-level southerlies over most areas of eastern China. Meanwhile, the relative humidity over eastern China was larger than normal, and the anomalous inversion in near-surface increased the stability of the surface air. The above atmospheric circulation conditions were unfavorable for horizontal and vertical diffusion of pollutants. As a result, severe fog and haze events occur frequently under the circumstance of pollutant emissions. Therefore, the large-scale atmospheric circulation anomalies caused by super El Niño events should be one of the most important reasons for these fog and haze disasters in eastern China, especially in North China.

Key words: Super El Niño, North China, Fog and haze, Winter monsoon, Atmospheric stability, Inversion

中图分类号: 

  • P461
Cao J J. 2014. PM2.5 and the Environment in China (in Chinese). Beijing:Science Press, 428pp.
Chan J C L, Li C Y. 2004. The East Asian winter monsoon.//Chang C P.East Asian Monsoon.Singapore:World Scientific Publisher, 54-106.
Che H Z, Zhang X Y, Li Y, et al. 2009. Haze trends over the capital cities of 31 provinces in China, 1981-2005. Theor. Appl. Climatol., 97(3-4):235-242.
Chen W. 2002. Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chinese Journal of Atmospheric Sciences (in Chinese), 26(5):595-610.
Ding Y H, Liu Y J. 2014. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Science China:Earth Sciences, 57(1):36-46.
Fu C B, Dan L. 2014. Spatiotemporal characteristics of haze days under heavy pollution over Central and Eastern China during 1960-2010. Climatic and Environmental Research (in Chinese), 19(2):219-226.
Gao G. 2008. The climatic characteristics and change of haze days over China during 1961-2005. Acta Geographica Sinica (in Chinese), 63(7):761-768.
Guan Z Y, Guan Z Y, Cai J X, et al. 2013. Mean climatology and interannual variations of the atmospheric stability of planetary boundary layer in the eastern China during boreal summer. Transactions of Atmospheric Sciences (in Chinese), 36(6):734-741.
Kistler R, Kalnay E, Collins W, et al. 2001. The NCEP-NCAR 50-year reanalysis:Monthly means CD-ROM and documentation. Bull. Am. Meteor. Soc., 82(2):247-268.
Li C Y. 1988. Frequent strong activities of East Asian trough and the occurrence of El Niño event. Sci. China (Ser. B) (in Chinese), 31(6):667-674.
Li C Y. 1989. Warmer winter in eastern China and El Niño. Chinese Science Bulletin, 34(21):1801-1805.
Li C Y. 1990. Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7(1):36-46.
Miao Y C, Zheng Y J, Wang S, et al. 2015. Recent advances in, and future prospects of, research on haze formation over Beijing-Tianjin-Hebei, China. Climatic and Environmental Research (in Chinese), 20(3):356-368.
Reynolds R W, Rayner N A, Smith T M, et al. 2002. An improved in situ and satellite SST analysis for climate. J. Climate, 15:1609-1625.
Shao X, Zhou B. 2016. Monitoring and diagnosis of the 2015/2016 super El Niño event. Meteor. Mon. (in Chinese), 42(5):540-547.
Sun Y, Guan Z Y, Ma F H, et al. 2015. Linkage between AOD and surface solar radiation variability in association with East Asian summer monsoon circulation changes:Role of seasonal trends. Transactions of Atmospheric Sciences (in Chinese), 38(2):165-174.
Sun Y, Ma Z F, Niu T, et al. 2013. Characteristics of climate change with respect to fog days and haze days in China in the past 40 years. Climatic and Environmental Research (in Chinese), 18(3):397-406.
Tao S Y, Zhang Q Y. 1998. Response of the Asian winter and summer monsoon to ENSO events. Chinese J. Atmos. Sci. (in Chinese), 22(4):399-407.
Wang B, Wu R G, Fu X H. 2000. Pacific-east Asian teleconnection:How does ENSO affect East Asian climate?.J. Climate, 13(9):1517-1536.
Wang Y S, Yao L, Wang L L, et al. 2014. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China:Earth Sciences, 57(1):14-25.
Wang Z F, Li J, Wang Z, et al. 2014. Modeling study of regional severe hazes over Mid-Eastern China in January 2013 and its implications on pollution prevention and control. Science China:Earth Sciences, 57(1):3-13.
Wu D, Liao B T, Wu M, et al. 2014. The long-term trend of haze and fog days and the surface layer transport conditions under haze weather in North China. Acta Scientiae Circumstantiae (in Chinese), 34(1):1-11.
Wu D, Wu X J, Li F, et al. 2010.Temporal and spatial variation of haze during 1951-2005 in Chinese mainland. Acta Meteorologica Sinica (in Chinese), 68(5):680-688.
Wu Z X, Li C Y, Chen B, et al. 1990.A diagnostic analysis of general circulation anomaly during the El Niño process for the winter 1982/83. Journal of Tropical Meteorology (in Chinese), (3):253-264.
Yuan Y, Gao H, Jia X L, et al. 2016. Influences of the 2014-2016 super El Niño event on climate. Meteor. Mon. (in Chinese), 42(5):532-539.
Yuan Y, Li C Y, YangS. 2014.Decadal anomalies of winter precipitation over southern China in association with El Niño and La Nina.Acta Meteorologica Sinica (in Chinese), 72(2):237-255.
Zhang G C, Jiao M Y, Li Y X. 2007. Techniques and Methods of Contemporary Weather Forecast (in Chinese). Beijing:Meteorological Press, 371.
Zhang R, Sumi A, Kimoto M. 1996. Impact of El Niño on the East Asian monsoon:A diagnostic study of the'86/87 and'91/92 events. J. Meteor. Soc. Japan, 74(1):49-62.
Zhang R H, Li Q, Zhang R N. 2014. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Science China:Earth Sciences, 57(1):26-35.
Zhang R H, Sumi A, Kimoto M. 1999. A diagnostic study of the impact of El Niño on the precipitation in China.Adv. Atmos. Sci., 16(2):229-241.
Zhou L T, Tam C Y, Zhou W, et al. 2010.Influence of South China Sea SST and the ENSO on winter rainfall over South China. Adv. Atmos. Sci., 27(4):832-844.
Zhou N F, Li F, Rao X Q, et al. 2008. Study on Haze Weather in China during Winter time of 2006. Meteorological Monthly (in Chinese), 34(6):81-88.
附中文参考文献
曹军骥. 2014. PM2.5与环境. 北京:科学出版社, 428pp.
陈文. 2002. El Niño和La Niña事件对东亚冬、夏季风循环的影响. 大气科学, 26(5):595-610.
丁一汇, 柳艳菊. 2014. 近50年我国雾和霾的长期变化特征及其与大气湿度的关系. 中国科学:地球科学, 44(1):37-48.
符传博, 丹利. 2014. 重污染下我国中东部地区1960-2010年霾日数的时空变化特征. 气候与环境研究, 19(2):219-226.
高歌. 2008. 1961-2005年中国霾日气候特征及变化分析. 地理学报, 63(7):761-768.
管振宇, 管兆勇, 蔡佳熙等. 2013. 华东区域夏季行星边界层大气稳定度的气候特征及其与气溶胶的联系. 大气科学学报, 36(6):734-741.
李崇银. 1988. 频繁的强东亚大槽活动与El Niño的发生. 中国科学(B辑), 31(6):667-674.
缪育聪, 郑亦佳, 王姝等. 2015. 京津冀地区霾成因机制研究进展与展望. 气候与环境研究, 20(3):356-368.
邵勰, 周兵. 2016. 2015/2016年超强厄尔尼诺事件气候监测及诊断分析. 气象, 42(5):540-547.
孙一, 管兆勇, 马奋华等. 2015. 夏季东亚地区AOD与地面太阳辐射变化的联系及季风环流异常:季节趋势影响. 大气科学学报, 38(2):165-174.
孙彧, 马振峰, 牛涛等. 2013. 最近40年中国雾日数和霾日数的气候变化特征. 气候与环境研究, 18(3):397-406.
陶诗言, 张庆云.1998. 亚洲冬夏季风对ENSO事件的响应. 大气科学, 22(4):399-407.
王跃思, 姚利, 王莉莉等. 2014. 2013年元月我国中东部地区强霾污染成因分析. 中国科学:地球科学, 44(1):15-26.
王自发, 李杰, 王哲等. 2014. 2013年1月我国中东部强霾污染的数值模拟和防控对策. 中国科学:地球科学, 44(1):3-14.
吴兑, 廖碧婷, 吴蒙等. 2014. 环首都圈霾和雾的长期变化特征与典型个例的近地面输送条件. 环境科学学报, 34(1):1-11.
吴兑, 吴晓京, 李菲等. 2010. 1951-2005年中国大陆霾的时空变化. 气象学报, 68(5):680-688.
吴正贤, 李崇银, 陈彪等. 1990. 1982-1983年冬季厄尔尼诺期间大气环流异常的诊断分析.热带气象学报, (3):253-264.
袁媛, 高辉, 贾小龙等. 2016. 2014-2016年超强厄尔尼诺事件的气候影响. 气象, 42(5):532-539.
袁媛, 李崇银, 杨崧. 2014. 与厄尔尼诺和拉尼娜相联系的中国南方冬季降水的年代际异常特征. 气象学报, 72(2):237-255.
章国材, 矫梅燕, 李延香. 2007. 现代天气预报技术和方法. 北京:气象出版社, 371.
张人禾, 李强, 张若楠. 2014. 2013年1月中国东部持续性强雾霾天气产生的气象条件分析. 中国科学:地球科学, 44(1):27-36.
周宁芳, 李峰, 饶晓琴等. 2008. 2006年冬半年我国霾天气特征分析. 气象, 34(6):81-88.
[1] 李晓杰;王真理. 正则化等效层重力向下延拓方法[J]. 地球物理学报, 2018, 61(7): 3028-3036.
[2] 阿尔察;刘四清;黄文耿;李建勇;师立勤;龚建村;陈艳红;沈华;蔡燕霞;鲁国瑞. 中国电离层TEC同化现报系统[J]. 地球物理学报, 2018, 61(6): 2186-2197.
[3] 皮娇龙;滕吉文;刘有山. 地震槽波的数学-物理模拟初探[J]. 地球物理学报, 2018, 61(6): 2481-2493.
[4] OURO-DJOBO SEDIKOU B.;魏文博;叶高峰;金胜;景建恩;姬磊喆;董浩;张乐天;尹曜田;谢成良. 华北大地电磁测深阵列观测实验与岩石圈导电性快速成像模型[J]. 地球物理学报, 2018, 61(6): 2508-2524.
[5] 周建美;刘文韬;刘航;李貅;戚志鹏. 多频可控源电磁法三维有理函数Krylov子空间模型降阶正演算法研究[J]. 地球物理学报, 2018, 61(6): 2525-2536.
[6] 蒋长胜;毕金孟;王福昌;隗永刚;龙锋. 利用早期余震预测的Omi-R-J方法对2017年四川九寨沟MS7.0地震的应用研究[J]. 地球物理学报, 2018, 61(5): 2099-2110.
[7] 梁建宏;孙丽;刘杰. 2017年四川九寨沟MS7.0地震及余震精定位研究[J]. 地球物理学报, 2018, 61(5): 2152-2162.
[8] 杨颖航;王真理;徐涛;杨长春. 三维TTI介质高效射线追踪方法[J]. 地球物理学报, 2018, 61(4): 1421-1433.
[9] 宋建国;郭毓;冉然. 基于比值均方根的杨氏模量反演方法[J]. 地球物理学报, 2018, 61(4): 1508-1518.
[10] 南方舟;徐亚;刘伟;刘丽华;郝天珧;游庆瑜. 基于稀疏表达的OBS去噪方法[J]. 地球物理学报, 2018, 61(4): 1519-1528.
[11] 周熙焱;常旭;王一博;姚振兴. 基于纵横波解耦的三维弹性波逆时偏移[J]. 地球物理学报, 2018, 61(3): 1038-1052.
[12] 吕浩宇;李芸;葛亚松. 磁尾中交换不稳定性所产生偶极化锋面的动力学特性研究[J]. 地球物理学报, 2018, 61(2): 403-410.
[13] 罗佳;陈志平;徐晓华. 利用COSMIC掩星资料研究对流层/下平流层大气比湿对ONI指数的响应[J]. 地球物理学报, 2018, 61(2): 466-476.
[14] 王婷;王普才. 华北典型污染地区多轴差分吸收光谱技术的气溶胶反演研究[J]. 地球物理学报, 2018, 61(2): 494-503.
[15] 宋春燕;马瑾;王海涛;张琳琳. 强震前断裂亚失稳阶段及失稳部位的特征研究——以新疆南天山西段为例[J]. 地球物理学报, 2018, 61(2): 604-615.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!