地球物理学报 ›› 2016, Vol. 59 ›› Issue (12): 4759–4770.doi: 10.6038/cjg20161234

• 应用地球物理学 • 上一篇    下一篇

连通域标识法在FMI图像溶洞信息定量拾取中的应用

闫建平1,2, 梁强2, 李尊芝2, 耿斌3, 寇小攀4, 扈勇4   

  1. 1. 油气藏地质及开发工程国家重点实验室, 西南石油大学, 成都 610500;
    2. 西南石油大学地球科学与技术学院, 成都 610500;
    3. 中石化胜利油田勘探开发研究院, 山东东营 257015;
    4. 中国石油集团测井有限公司 长庆事业部, 西安 718500
  • 收稿日期:2015-06-10 修回日期:2016-09-27 出版日期:2016-12-05
  • 作者简介:闫建平,男,1980年生,副教授(理学博士),研究方向为测井地质学、岩石物理及成像测井图像处理与应用.E-mail:yanjp_tj@163.com
  • 基金资助:
    油气藏地质及开发工程国家重点实验室(西南石油大学)开放课题(PLN201612),国家自然科学基金项目(41202110,51674211),四川省科技厅应用基础研究计划项目(2015JY0200),天然气地质四川省重点实验室开放基金(2015trqdz07)联合资助.

A connected domain identification method and its application in quantitatively pickup information of caves using electric imaging logging

YAN Jian-Ping1,2, LIANG Qiang2, LI Zun-Zhi2, GENG Bin3, KOU Xiao-Pan4, HU Yong4   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Resources and Environment, Southwest Petroleum University, Chengdu 610500, China;
    3. Institute of Exploration and Development, Shengli Oil Field, SINOPEC, Shandong Dongying 257015, China;
    4. Changqing Division of PetroChina Logging Company, Xi'an 718500, China
  • Received:2015-06-10 Revised:2016-09-27 Online:2016-12-05

摘要: 溶蚀孔洞在碳酸盐岩储层中是重要的流体储集空间,研究成像测井(FMI)图像孔洞连通域标记及信息定量拾取很有意义.全井眼微电阻率成像测井(FMI)经数据处理后可得到全井壁高分辨率的彩色图像,经图像灰度化、中值滤波处理后,通过阈值分割得到能够反映井壁溶蚀孔洞特征的二值图像,孔洞表现为黑色暗斑.基于等价对处理的图像连通域标记算法具有快速、不重复标记的优点,利用该算法,可准确地从二值图像中标记溶蚀孔洞连通域,进而可对每个连通域进行目标信息拾取,包括孔洞尺寸、连通域面积、圆度等.利用反映溶蚀孔洞发育程度的面孔率曲线对图像进行分层,在此基础上可拾取每一层段溶蚀孔洞面孔率、分选系数及溶洞密度值的分布等非均质信息,能够定量地评价溶蚀孔洞发育、非均质性强的碳酸盐岩储层,也是FMI图像应用于岩石孔洞结构信息定量表征新的尝试.

关键词: 连通域, 溶蚀孔洞, 电成像, 面孔率, 溶洞尺度, 圆度

Abstract: Solution caves are important spaces in carbonate reservoirs, which usually have complex causes and strong heterogeneity, so it is very difficult to predict. The caves, which control the oil-gas distributions to some extent, are developed during the palaeokarst process and are usually associated with fractures. According to shape and attitude they can be divided into many types such as the spot-plaque solution cave, stratiform cave and reticular fracture-cave. Studying the connected domain of these caves with quantificational labeling and parameter extraction have important significance to effective evaluation of carbonate reservoirs. The full borehole microresistivity imaging logging (FMI) with high resolution and large amount of information can reflect wellbore section features. It has a broad application in geology and rock physics, so it is important information to studying solution caves and fractures in carbonate reservoirs.This work takes the FMI high-resolution color images from the hole-type carbonate formation of Ordovician in the Tarim basin as the research object. First of all, the original image is gray processed to reduce the data size of the image to facilitate subsequent processing. Then in order to filter noise and protect the edge information, we conduct median filtering processing on gray images to realize the nonlinear smoothing. Finally, we use cores calibrate image to select the appropriate threshold and segmentation image after the median filtering processing to get the binary image which can reflect the characteristics of the borehole wall, in which solution pores are displayed as black spots.After the binaryzation, we adopt the labeling algorithm for image connected domain based on equivalence pair processing which has the advantages of fast and no-repeat to process the image. In the same time, we combine the eight-neighborhood connect rule to labeling holes connected domain, where every hole will yield a unique number. And then, the information of every connected domain can be fetched including the hole size (length, width and radius of circumcircle and incircle), sorting coefficient, number of connected domains, areal porosity, roundness and the density of the hole. Utilizing areal porosity curve can divide the image into some layers based on the development degrees of solution pores, and the important heterogeneous information also can be extracted. According to these data information, heterogeneity and the development degree of solution pores can be presented clearly. Overall, this method provides a technology support for evaluation carbonate reservoirs with strong heterogeneity and lots of solution caves.

Key words: Connected domain, Solution cave, Electric imaging, Surface porosity, Cave scale, Roundness

中图分类号: 

  • P631
Assous S, Whetton J A, Elkington P A. 2013. Microresistivity image inpainting and visualization.//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA: SPE.
Chai H, Li N, Xiao C W, et al. 2009. Automatic discrimination of sedimentary facies and lithologies in reef-bank reservoirs using borehole image logs. Applied Geophysics, 6(1): 17-29.
Chai H, Li N, Xiao S J, et al. 2012. High-resolution rock structure image processing method and its applications in carbonate reservoir evaluation. Acta Petrolei Sinica (in Chinese), 33(Suppl. 2): 154-159.
Chen G H, Wu W S, Wang Z W, et al. 1999. Fracture identification by microresistivity scanner log. Well Logging Technology (in Chinese), 23(4): 279-281.
Chitale V. 2005. Borehole imaging in reservoir characterization: implementation of a standard interpretation workflow for the clastic- and carbonate reservoirs.//SPWLA 46th Annual Logging Symposium. New Orleans, Louisiana.
Ge X M, Fan Y R, Li J T, et al. 2015. Pore structure characterization and classification using multifractal theory-An application in Santanghu basin of western China. Journal of Petroleum Science & Engineering, 127: 297-304.
Izgec O, Keys R S, Zhu D, et al. 2008. An integrated theoretical and experimental study on the effects of multiscale heterogeneities in matrix acidizing of carbonates.//SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: SPE.
Jiang T, Qiu M, Chen J, et al. 2009. LILA: a connected components labeling algorithm in grid-based clustering.//Proceedings of the 1st International Workshop on Database Technology & Applications. Wuhan, Hubei: IEEE: 213-216.
Loucks R G. 1999. Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bulletin, 83(11): 1795-1834.
Ma J L, Zhao Z M, Meng Y, et al. 2008. Connected component labelling for massive remote sensing classification image. Computer Engineering (in Chinese), 34(1): 262-264.
Ma Y H, Zhan L J, Xie C J, et al. 2013. Parallelization of connected component labeling algorithm. Geography and Geo-Information Science (in Chinese), 29(4): 67-71.
Niu L Q, Peng M, Sun Z L, et al. 2015. Fast connected components labeling by propagating labels of run sets. Journal of Computer-Aided Design & Computer Graphic (in Chinese), 27(1): 128-135.
Niu Y J, Kang Z H, Long X, et al. 2011. Origin and evolution of Ordovician karst cave reservoir in Tahe oilfield. Geoscience (in Chinese), 25(4): 650-659.
Peng R D, Yang Y C, Ju Y, et al. 2011. Computation of fractal dimension of rock pores based on gray CT images. Chinese Science Bulletin, 56(31): 3346-3357.
Rodríguez J E, Cruz I, Vergés E, et al. 2011. A connected-component-labeling-based approach to virtual porosimetry. Graphical Models, 73(5): 296-310.
Shi S Y, Hu S Y, Liu W, et al. 2014. Ordovician paleokarst cave system and it's controlling factor in Xekar, Tarim Basin. Natural Gas Geoscience (in Chinese), 25(2): 167-177.
Tian J W, Gao Q, Du Y J, et al. 1999. An automatic detection method of cave based on borehole imaging logging image. Journal of Jianghan Petroleum Institute (in Chinese), 21(2): 20-22.
Tu X, Lu Y. 2010. Run-based approach to labeling connected components in document images.//Proceedings of the 2nd International Workshop on Education Technology and Computer Science. Wuhan, China: IEEE, 206-209.
Wang J, Zhang Y N, Luo J C, et al. 2005. Improved connected component labeling on high-resolution remote sensing image. Computer Engineering and Applications (in Chinese), 41(10): 37-39, 112.
Wang K, Huang S, Zhao Y, et al. 2014. Improved algorithm of connected component labeling for image targets extraction. Computer Engineering and Design (in Chinese), 35(7): 2438-2441, 2498.
Xiao C W, Liu X L, Zhang C S, et al. 2010. Characterizing fractured-vuggy carbonate reservoirs quantitatively based on the integration of well and seismic.//SPWLA 51th Annual Logging Symposium. Perth, Australia.
Yan J P, Cai J G, Shou X Y, et al. 2009. Intelligent picking method of the fracture information from imaging logging. Natural Gas Industry (in Chinese), 29(3): 51-53.
Yan J P, Cai J G, Zhao M H, et al. 2011. Application of electrical image logging in the study of sedimentary characteristics of sandy conglomerates. Petroleum Exploration and Development (in Chinese), 38(4): 444-451.
Ye R Q, Niu R Q, Zhang L P. 2011. Mineral features extraction and analysis based on multiresolution segmentation of petrographic images. Journal of Jilin University (Earth Science Edition) (in Chinese), 41(4): 1253-1261.
Zhang S Y, Qin X Y, Wang S X. 2007. Research on horizon division and transverse contrast of carbonate karst reservoir.//SEG Technical Program Expanded Abstracts 2007. SEG: 358-362.
Zhong G F, Liu R L, Liu J H, et al. 2004. Identifying the paleocaves in Ordovician in Tabei Uplift by electro-imaging logs. Natural Gas Industry (in Chinese), 24(6): 57-60.
Zhong G F, Hui G J, Yang H J, et al. 2009. Electrical image logs applied to predict the distribution of Ordovician paleocaves in east Lungu area, Tarim Basin. Natural Gas Industry (in Chinese), 29(10): 24-27.
Zhong J H, Mao C, Li Y, et al. 2012. Discovery of the ancient Ordovician oil-bearing karst cave in Liuhuanggou, North Tarim Basin, and its significance. Science China: Earth Science, 55(9): 1406-1426.
Zhu X M. 2008. Sedimentary Petrology. 4th ed (in Chinese). Beijing: Petroleum Industry Press: 56-71.
Zuo M, Zeng G P, Tu X Y, et al. 2011. A connected domain labeling algorithm based on equivalence pair in binary image. Computer Simulation (in Chinese), 28(1): 14-16, 50.
柴华, 李宁, 夏守姬等. 2012. 高清晰岩石结构图像处理方法及其在碳酸盐岩储层评价中的应用. 石油学报, 33(增刊2): 154-159.
陈钢花, 吴文圣, 王中文等. 1999. 利用地层微电阻率成像测井识别裂缝. 测井技术, 23(4): 279-281.
马江林, 赵忠明, 孟瑜等. 2008. 海量遥感分类图连通域标记方法. 计算机工程, 34(1): 262-264.
马益杭, 占利军, 谢传节等. 2013. 连通域标记算法的并行化研究. 地理与地理信息科学, 29(4): 67-71.
牛连强, 彭敏, 孙忠礼等. 2015. 利用游程集合的标号传播实现快速连通域标记. 计算机辅助设计与图形学学报, 27(1): 128-135.
牛玉静, 康志宏, 龙旭等. 2011. 塔河油田奥陶系岩溶油藏溶洞储集体成因及演化. 现代地质, 25(4): 650-659.
彭瑞东, 杨彦从, 鞠杨等. 2011. 基于灰度CT图像的岩石孔隙分形维数计算. 科学通报, 56(26): 2256-2266.
石书缘, 胡素云, 刘伟等. 2014. 塔里木盆地西克尔地区奥陶系溶洞系统特征及控制因素. 天然气地球科学, 25(2): 167-177.
田金文, 高谦, 杜拥军等. 1999. 基于井壁成像测井图像的溶洞自动检测方法. 江汉石油学院学报, 21(2): 20-22, 30.
王晶, 张艳宁, 骆剑承等. 2005. 针对高分辨率遥感影像分割的改进连通域标记方法. 计算机工程与应用, 41(10): 37-39, 112.
王凯, 黄山, 赵瑜等. 2014. 面向图像目标提取的改进连通域标记算法. 计算机工程与设计, 35(7): 2438-2441, 2498.
闫建平, 蔡进功, 首祥云等. 2009. 成像测井图像中的裂缝信息智能拾取方法. 天然气工业, 29(3): 51-53.
闫建平, 蔡进功, 赵铭海等. 2011. 电成像测井在砂砾岩体沉积特征 研究中的应用. 石油勘探与开发, 38(4): 444-451.
叶润青, 牛瑞卿, 张良培. 2011. 基于多尺度分割的岩石图像矿物特征提取及分析. 吉林大学学报: 地球科学版, 41(4): 1253-1261.
钟广法, 刘瑞林, 柳建华等. 2004. 塔北隆起奥陶系古岩溶的电成像测井识别. 天然气工业, 24(6): 57-60.
钟广法, 慧冠军, 杨海军等. 2009. 塔里木盆地轮古东地区奥陶系古溶洞的成像测井预测. 天然气工业, 29(10): 24-27.
钟建华, 毛毳, 李勇等. 2012. 塔北硫磺沟奥陶系含油古溶洞的发现及意义. 中国科学: 地球科学, 42(11): 1660-1680.
朱筱敏. 2008. 沉积岩石学(第四版). 北京: 石油工业出版社: 56-71.
左敏, 曾广平, 涂序彦等. 2011. 基于等价对的图像连通域标记算法. 计算机仿真, 28(1): 14-16, 50.
[1] 刘瑞林;谢芳;肖承文;张丽莉. 基于小波变换图像分割技术的电成像测井资料裂缝、孔洞面孔率提取方法[J]. 地球物理学报, 2017, 60(12): 4945-4955.
[2] 陈圣波;杨莹;崔腾飞. 静止卫星闪电探测中云影响研究[J]. 地球物理学报, 2012, 55(3): 797-803.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!