地球物理学报 ›› 2016, Vol. 59 ›› Issue (5): 1647–1660.doi: 10.6038/cjg20160510

• 地球动力学·地震学·地磁学·地热学 • 上一篇    下一篇

天山地震带境内外主要断层滑动速率和地震矩亏损分布特征研究

刘代芹1, LIU Mian2, 王海涛1, 李杰1, 程佳3, 王晓强1   

  1. 1. 新疆维吾尔自治区地震局, 乌鲁木齐 830011;
    2. University of Missouri, Columbia, MO 65211, USA;
    3. 中国地震台网中心, 北京 100045
  • 收稿日期:2015-02-05 修回日期:2015-07-10 出版日期:2016-05-05
  • 通讯作者: 李杰,男,1975年生,高级工程师,主要从事大地测量及地壳形变研究.E-mail:lijiexj@sohu.com E-mail:lijiexj@sohu.com
  • 作者简介:刘代芹,男,1979年生,高级工程师,主要从事大地测量、重力测量及地壳形变研究.E-mail:xjdzjldq@126.com
  • 基金资助:
    地震科技星火计划(XH14054Y), 国家自然科学基金(41374030、41474016、41274036),自治区科研机构创新发展专项资金(2013016)联合资助.

Slip rates and seismic moment deficits on major faults in the Tianshan region

LIU Dai-Qin1, LIU Mian2, WANG Hai-Tao1, LI Jie1, CHENG Jia3, WANG Xiao-Qiang1   

  1. 1. Earthquake Administration of Xinjiang Uygur Autonomous Region, Urumqi 830011, China;
    2. University of Missouri, Columbia, MO 65211, USA;
    3. China Earthquake Networks Center, Beijing 100045, China
  • Received:2015-02-05 Revised:2015-07-10 Online:2016-05-05

摘要: 本文搜集、整理1998—2013年境内外天山及周边地区(包括中国新疆、哈萨克斯坦、吉尔吉斯斯坦等)500余个GPS观测点数据,采用GAMIT/GLOBK软件对其进行解算和平差计算,并利用了弹性块体模型计算区域块体边界断层闭锁深度、块体运动参数和主要活动断层的滑动速率.研究结果表明,东、西昆仑地震带闭锁深度最大(19 km),其次为南天山地区,闭锁深度达到17 km,闭锁深度最小的为哈萨克斯坦(13 km);各块体相对欧亚板块作顺(逆)时针旋转,旋转速率最大( -0.7208±0.0034°/Ma)为塔里木块体,其围绕欧拉极(38.295±0.019°N, 95.078±0.077°E)顺时针方向转动,旋转速率最小为天山东段(0.108±0.1210°/Ma),而天山东、西两段无论是在旋转速率上还是在旋转方向上都有显著的区别.西昆仑断裂带的滑动速率(10.2±2.8 mm·a-1)最大,南天山西段滑动速率为9.5±1.8 mm·a-1,其东段为3.9±1.1 mm·a-1;而北天山东段滑动速率(4.7±1.1 mm·a-1)高于北天山西段(3.7±0.9 mm·a-1);塔里木盆地南缘的阿尔金断裂带平均滑动速率为7.6±1.4 mm·a-1,其结果与阿勒泰断裂带滑动速率(7.6±1.6 mm·a-1)基本相当;天山断裂带运动方式主要以挤压为主,而阿尔金、昆仑、阿尔泰以及哈萨克斯坦断裂带均是以走滑运动方式为主,除阿勒泰断裂带走滑方式为右旋以外,其余几个断裂带均为左旋运动.最后,利用主要断裂带的滑动速率计算出各地震带的地震矩变化率以及1900年以来地震矩累计变化量,其结果与利用地震目录计算所得到的地震矩进行比较,判定出各地震带上地震矩均衡分布状态,研究结果显示阿尔金、西昆仑、东昆仑和北天山东段断裂带存在较大的地震矩亏损,均具有发生7级以上地震的可能性,南天山东段和哈萨克斯坦断裂带地震矩亏损相对较小,具有孕育6~7级地震的潜能,而天山西段、阿勒泰地震矩呈现出盈余状态,不具在1~3年内有发生强震的可能.

关键词: 弹性块体, GPS, 断层, 滑动速率, 地震矩亏损

Abstract: Over 500 GPS stations observed from 1998 to 2013 in the Tianshan region (including Xinjiang, Kazakhstan and Kyrgyzstan) were collected and analyzed using the GAMIT/GLOBK software. The site velocities were then used in an elastic block model to calculate both the locking depths and slip rates of the major active faults. The maximum locking depth (19 km) were found in the Eastern and Western Kunlun seismic zones; the locking depth is about 17 km in the Southern Tianshan region, while the minimum locking depth is 13 km in the Kazakhstan region. All blocks show some rotation relative to the stable Eurasian Plate. The Tarim block has the highest rotation rate (-0.7208±0.0034°/Ma), around the Euler Pole at 38.295±0.019°N and 95.078±0.077°E. The eastern Tianshan block has the lowest rotation rate (0.108±0.1210°/Ma), and the eastern and western sections of the Tianshan differ in both rotation rates and directions. The Western Kunlun fault zone has the highest slip rate (10.2±2.8 mm·a-1), while the western and eastern segments of the Southern Tianshan fault slip at 9.5±1.8 mm·a-1 and 3.9±1.1 mm·a-1, respectively. On the Northern Tianshan fault, the slip rate of its eastern segment is higher (4.7±1.1 mm·a-1) than the west segment (3.7±0.9 mm·a-1). The average slip rate on the Altyn Tagh fault is 7.6±1.4 mm·a-1, comparable to that on the Altay fault (7.6±1.6 mm·a-1). The Tianshan faults are dominantly compressive, while the Altyn Tagh, Kunlun, Altay and Kazakhstan faults were mainly strike-slip; all faults in this region are left lateral strike slip faults except the Altay fault, which is right lateral strike-slip. By comparing moment accumulation calculated by the slip rates with seismic moment release based on earthquake catalogue since 1900, the balance of seismic moment on each fault is estimated. The results show significant seismic moment deficits on the Altyn, the Western Kunlun, the East Kunlun, and the eastern segment of the Northern Tianshan faults, capable to produce magnitude 7.0 earthquakes on these faults. Lower moment deficits are found on the eastern segment of the Southern Tianshan and Kazakhstan fault zones, where earthquakes with magnitude 6.0~7.0 are possible. The western segments of the Tianshan and Altay faults shows surplus of seismic moment, thus are unlikely to have large earthquake in the new future.

Key words: Elastic blocks, GPS, Fault, Slip rate, Seismic moment deficit

中图分类号: 

  • P223
Altyn Tagh Active Fault Research Group, CEA, 1992. Altyn Tagh active fault. Beijing: Seismological Press (in Chinese). 85-86.
Avouac J P, Tapponnier P. 1993. Kinematic model of active deformation in central Asia. Geophys. Res. Lett., 20: 895-898.
Bendick R, Bilham R, Freymueller J T, et al. 2000. Geodetic evidence for a low slip rate in the Altyn Tagh fault system.Nature, 404(6773): 69-72.
Burchfiel B C, Brown E T, Deng Q D, et al. 1999. Crustal shortening on the margins of the Tien Shan, Xinjiang, China. Int. Geo. Rev., 41(8): 665-700.
Calais E, Vergnolle M, Sankov V, et al. 2003. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994—2002): Implications for current kinematics of Asia. J. Geophys. Res., 108(B10): 2501, doi: 10.1029/2002JB002373.
Chen Q, Freymuelle J T, et al. 2004.A deforming block model for the present-day tectonics of Tibet. J.Geophys.Res.,109, B0143.
Chen Y T, Zhang G W, Lu R K, et al. 2010.40Ar/39Ar geochronology of the Guozhacuo fault in the northwestern margin of Qinghai-Tibet Plateau——New evidence for the western extension of Altyn Tagh fault. Geological Bulletin of China (in Chinese), 29(8): 1129-1137.
Cheng J, Liu J, Sheng S Z, et al. 2014. Tectonic background of the Yutian MS7.3 earthquake and its relationship with the Yutian MS7.3 earthquake in 2008. Earthquake Research in China (in Chinese), 30(2):143-150.
Cowgill E, Gold R D, Chen X H, et al. 2009. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology, 37(7): 647-650, doi: 10.1130/G25623A.1.
Dang Y M, Chen J Y, Zhang Y P, et al.2002. Analysis crustal deformation characteristics of South Tianshan by GPS. Science of Surveying and Mapping (in Chinese),27(4): 13-15.
Deng Q D, Fang X Y, Zhang P Z, et al. 2000. Active Tectonic of Tianshan (in Chinese). Beijing:Seismological Press.
Deng Q D, Zhang P Z, Ran Y K, et al. 2002. Active tectonic characteristics in China. Science in China (in Chinese), 32(12): 1020-1030.
Ding G Y. 1991. Relative motion of Activities the plate and tectonic block.//Introduction to China Lithosphere Dynamics (in Chinese). Beijing:Seismological Press, 142-153.
England P, Molnar P. 1997. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys. J. Int., 130(3): 551-582.
England P, Molnar P. 2005. Late Quaternary to decadal velocity fields in Asia.J. Geophys. Res., 110: B12401, doi: 10.1029/2004JB003541.
Holt E W, Chamot-RookeN, Le PichonX L, et al. 2000. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. Geophys. J. Res., 105(B8): 19185-19210.
Li J, Wang Q, Wang X Q, et al. 2012. Characteristics of present crustal deformation and distribution of strain field in southern Tianshan-Pamir region. Journal of Geodesy and Geodynamics.(in Chinese), 32(1): 1-4.
Li Q,You X Z, Yang S M, et al. 2012. A precise velocity field of tectonic deformation in China as inferred from intensive GPS observations. Science in ChinaEarth Sciences (in Chinese),55(5): 695-698.
Li Y Z, Gao G Y, Gao G, et al. 2008. Study on the relationship between the characteristics of focal depth and faults in Urumqi region, Xinjiang. Seismology and Geology (in Chinese), 30(2): 534-543.
Liu R F, Chen Y T, Bormann P, et al. 2006. Comparison between earthquake magnitudes determined by China seismograph network and US seismographnetwork (II): Surface wave magnitude. Acta Seismologica Sinica, 19(1): 1-7.
Luo F Z, Qu Y J, Wang J. 2003. Study on the M=7.1 earthquake at the mouth of Kalakunlun Mt. in Hetian, Xinjiang on Nov.19, 1996. Inland Earthquake (in Chinese), 17(1): 33-38.
Mériaux A S, Tapponnier P, Ryerson F J, et al. 2005. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate. J. Geophys. Res., 110: B04404, doi: 10.1029/2004JB003210.
Ma X Y. 1989.China Lithosphere Dynamics Atlas (in Chinese). Beijing. SinoMaps Press.
Ma Z J, Xue F. 1983. Discuss to earthquake depth distribution and Earthquake-prone layer in China. Journal of Seismological Science Research (in Chinese), (3): 43-46.
McCaffrey R. 1988. Active tectonics of the eastern Sunda and Banda Arcs. J. Geophys. Res., 93(B12): 15163-15182.
McCaffrey R. 2002. Crustal block rotations and plate coupling.//Plate Boundary Zones. AGU: 100-122.
Meade B J, HagerB H, McCluskyS C, et al. 2002. Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by Global Positioning System measurements. Bull. Seismol. Soc. Am., 92(1): 208-215, doi: 10.1785/0120000837.
Meade B J, Hager B H. 2005. Block models of crustal motion in southern California constrained by GPS measurements. J. Geophys. Res., 110(B3): B03403,doi: 10.1029/2004JB003209.
Meade B J. 2007.Present-day kinematics at the India-Asia collision zone.Geology, 35(1): 81-84, doi: 10.1130/G22924A. 1.
Mohadjer S, Bendick R, Ischuk A, et al. 2010. Paritioning of India-Eursia convergence in the Parmir-Hindu Kush from GPS measurements. Geophysical Research Letter, 37, L04305, doi: 10.1029/2009GL041737.
Molnar P, Burchfiel B C, Liang K Y, et al. 1987. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia. Geology, 15(3): 249-253.
Niu Z J, Wang M, Sun H R, et a1. 2006. The latest observation results of China continental crustal movement velocity field. Chinese Science Bulletin (in Chinese), 50(8): 839-840.
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 75(4): 1135-1154.
Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82(2):1018-1040.
Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: an experimental approach. J. Geophys. Res., 93(B12): 15085-15117.
Replumaz,Tapponnier.2003. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric block. J. Geophys.Res.,108(B6): 2285.
Qiao X J, Wang Q, Du R L, et a1. 2002. Characteristics of crustal deformation relating to MS8.1 Kunlunshan earthquake. Geodesy and Geodynamics (in Chinese), 22(4): 6-11.
Savage J C, Burford R O. 1973.Geodetic determination of relative plate motion in central California. J. Geophys, Res.,78(5): 832-845.
Shen J, Li Y Z, Wang Y P, et al. 2003.The active faults in Altai mountains. Earth Science Frontiers (in Chinese), 10(S1): 132-141.
Shen Z K, ZhaoC K, YinA, et al. 2000. Contemporary crustal deformation in East Asia constrained by Global Positioning System measurements. J. Geophys. Res., 105(B3): 5721-5734.
Shen Z K, Wang M, Li Y X, et al. 2001. Crustal deformation along the Altyn Tagh fault system, western China, from GPS. J. Geophys. Res., 106(B12): 30607-30621.
Tan K, Li J, Wang Q. 2007. Lithospheric rheological structure constrained by geodetic data in Altay. Chinese J. Geophys. (in Chinese), 50(6): 1713-1718.
Wallace L M, Beavan J, McCaffrey R, et al. 2004. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys. Res., B12406,doi:10.1029/2004JB003241.
Wang H, Liu M, Cao J L, et al. 2011. Slip rates and seismic moment deficits on major active faults in mainland China. Journal of Geophysical Research, 116: B02405, doi: 10.1029/2010JB007821.
Wang H T, Li Z H, Zhao C P, et a1. 2007. Relocation of the MS≥2.0 earthquakes in the northern Tianshan Region, Xinjiang, using double difference earthquake relocation algorithm.Earthquake Research in China (in Chinese), 23(1): 47-55.
Wang Q, Ding G Y, Qiao X J, et al. 2000. Research on present in crustal deformation in the southern Tianshan(Jiashi),China by GPS geodesy. Acta Seismologica Sinca (in Chinese), 22(3): 262-270.
Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by Global Positioning System measurements.Science, 294(5542): 574- 577.
Wang X Q, Li J, Alexander Z, et al. 2007. Horizontal movement and strain characteristics in Tianshan and its adjacent region with GPS deformation data. Acta Seismologica Sinica(in Chinese), 29(1): 31-37.
Wang X Q, Tan K, Li J, et al. 2006. Crustal deformation field in Fuyun area of Xinjiang in past 50 years.Journal of Geodesy and Geodynamics (in Chinese), 26(3): 10-15.
Wang Z M, Wang X Q, Zhu L R, et al. 2007. Recent horizontal crustal deformation in Tianshan and Pamir plateau area. Plateau Earthquake Researth (in Chinese),19(3): 29-34.
Yang S M, Li J, Wang Q. 2008.Study on Tianshan recent deformation and faulting by GPS. Science in China (in Chinese), 38(7): 872-880.
Yang Z X, Waldhauser F, Chen Y T, et al. 2005.Double-difference relocation of earthquakes in central-western China, 1992-1999.J. Seismol., 9(2): 241-264, doi: 10.1007/s10950-005-3988-z.
Yue Y J, Ritts B D, Graham S A. 2001. Initiation and long-term slip history of the Altyn Tagh fault. International Geology Review, 43(12): 1087-1093.
Zhang G M, Ma H S, Wang H, et al. 2005. Boundaries between active-tectonic blocks and strong earthquakes in the China mainland.Chinese J. Geophys. (in Chinese), 48(3): 602-610.
Zhang P Z, Deng Q D, Zhang G M, et al. 2003.Active tectonic blocks and strong earthquakes in the continent of China.Science in China (in Chinese),46(z2): 13-24.
Zhang W Y. 1984. An Introduction to Fault-Block Tectonics. Beijing: Petroleum Industry Press:1-361.
Zheng J D.1993.Karakorum fault and Taxkorgan seismic deformation zone.Seosmology and Geology (in Chinese), 15(2): 107-116.
Zhu H B. 2010. The similar evolution of seismicity patterns of strong-moderate earthquakes before about MS8 earthquakes of Qinghai-Tibet block. Chinese Journal of Geophysics.(in Chinese),53(7): 1611-1621.
[1] 梁明;王武星;张晶. 联合GPS和GRACE观测研究日本MW9.0地震震后变形机制[J]. 地球物理学报, 2018, 61(7): 2691-2704.
[2] 曹筠;冉勇康;许汉刚;李彦宝;马兴全;梁明剑;李西;张鹏;李丽梅. 郯庐断裂带江苏段安丘-莒县断裂全新世活动及其构造意义[J]. 地球物理学报, 2018, 61(7): 2828-2844.
[3] 李昌珑;吴健;徐伟进;高孟潭. 基于断层活动资料的鄂尔多斯块体周缘未来30年大地震危险性研究[J]. 地球物理学报, 2018, 61(6): 2344-2357.
[4] 李晓慧;姚路;马胜利;杨晓松. 龙门山断裂带金河磷矿剖面断层泥的低速至高速摩擦性质研究[J]. 地球物理学报, 2018, 61(5): 1741-1757.
[5] 杨晓松;段庆宝;陈建业. 汶川地震断裂带水岩相互作用及其对断裂带演化影响[J]. 地球物理学报, 2018, 61(5): 1758-1770.
[6] 何祥丽;李海兵;张蕾;王焕;葛成隆;曹勇;白明坤;李成龙;叶小舟;韩帅. 龙门山灌县—安县断裂带断层泥低磁化率的矿物、化学响应和蠕滑作用环境[J]. 地球物理学报, 2018, 61(5): 1782-1796.
[7] 马林飞;陶玮;张永;曾明会;郑茜. 龙门山断层地震周期及其动力学过程模拟研究[J]. 地球物理学报, 2018, 61(5): 1824-1839.
[8] 周红. 基于NNSIM随机有限断层法的7.0级九寨沟地震强地面运动场重建[J]. 地球物理学报, 2018, 61(5): 2111-2121.
[9] 魏文薪;江在森;邵德胜;邵志刚;刘晓霞;邹镇宇;王岩. 2014年鲁甸6.5级地震GPS同震位移及反演分析[J]. 地球物理学报, 2018, 61(4): 1258-1265.
[10] 谢俊举;李小军;温增平;周宝峰. 芦山7.0级地震近断层地震动的方向性[J]. 地球物理学报, 2018, 61(4): 1266-1280.
[11] 刘金瑞;任治坤;张会平;李传友;张竹琪;郑文俊;李雪梅;刘彩彩. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论[J]. 地球物理学报, 2018, 61(4): 1281-1297.
[12] 王培涛;闪迪;侯京明;王岗;高义;任智源;范婷婷;王宗辰;王君成. 港湾中海啸流的模拟及其时空演变特征对输入条件不确定性的响应分析[J]. 地球物理学报, 2018, 61(4): 1325-1340.
[13] 王卫民;郝金来;何建坤;王洵;赵连锋. 2013年巴基斯坦俾路支MW7.7地震震源过程研究[J]. 地球物理学报, 2018, 61(3): 872-879.
[14] 邓园浩;程惠红;张贝;张怀;石耀霖. 历史大地震断层滑动模型的建立及其对同震数值计算的影响——以1920年宁夏海原MS8.5大地震为例[J]. 地球物理学报, 2018, 61(3): 975-987.
[15] 贺鹏超;王敏;王琪;沈正康. 基于2001年MW7.8可可西里地震震后形变模拟研究藏北地区岩石圈流变学结构[J]. 地球物理学报, 2018, 61(2): 531-544.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!