地球物理学报 ›› 2016, Vol. 59 ›› Issue (3): 767–777.doi: 10.6038/cjg20160301

• 空间物理学·大气物理学·大地测量学 • 上一篇    下一篇

太阳高能粒子(SEP)传播数值模拟中的太阳风背景场研究

魏稳稳1,2, 沈芳1, 左平兵1, 秦刚1, 杨子才1,2   

  1. 1. 中国科学院国家空间科学中心空间天气学国家重点实验室, 北京 100190;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2015-06-12 修回日期:2015-08-31 出版日期:2016-03-05
  • 通讯作者: 沈芳,研究员,主要从事日地空间背景太阳风结构以及行星际扰动传播过程的三维MHD数值模拟.E-mail:fshen@spaceweather.ac.cn E-mail:fshen@spaceweather.ac.cn
  • 作者简介:魏稳稳,女,1989年生,博士研究生,方向为太阳高能粒子传播背景场的研究.E-mail:wwwei@spaceweather.ac.cn
  • 基金资助:
    国家重点基础研究专项经费资助项目(2012CB825601),中国科学院知识创新工程重大项目(KZZD-EW-01-4),国家自然科学基金(41174150, 41174152, 41374188, 41474152)联合资助.

Effects of the solar wind background field on the numerical simulation of the Solar Energetic Particle(SEP) transportation

WEI Wen-Wen1,2, SHEN Fang1, ZUO Ping-Bing1, QIN Gang1, YANG Zi-Cai1,2   

  1. 1. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-06-12 Revised:2015-08-31 Online:2016-03-05

摘要: 太阳高能粒子(SEP)事件是一类重要的空间天气灾害性事件,如能准确预报SEP事件,人们便可以采取必要的防护措施,保障卫星、星载设备以及航天员的安全,尽可能地降低经济损失.因此,其数值预报研究在空间天气预报研究中占有很重要的地位.SEP事件中的高能粒子在不同的时间尺度内被耀斑过程或者CME驱动的激波加速,并且在被扰动后的行星际太阳风中传输,这些过程都紧紧依赖于太阳风背景场.因此获取更加接近物理真实的太阳风背景场是模拟SEP事件的重要部分,也是提高SEP物理模式的关键因素之一.我们目前的工作基于张明等发展的SEP在行星际空间传播的模型,尝试将Parker太阳风速度解及WIND飞船观测的磁场实时数据融入模型中,研究不同的太阳风速度以及真实磁场分布对SEP在行星际空间中传播的影响.通过求解聚焦传输方程,我们的模拟结果表明:(1)快太阳风条件下,绝热冷却效应项发挥了更大的作用,使粒子能量衰减的更快,而慢太阳风对粒子的通量变化没有显著影响;(2)加入观测的磁场数据时,粒子的全向通量剖面发生了比较明显的变化,具体表现在:通量峰值推迟到达、出现多峰结构、各向异性也发生一些改变.分析表明真实磁场的极性对粒子在行星际空间中传播有着重要的影响.

关键词: 太阳高能粒子, 磁场, 太阳风, 行星际输运

Abstract: Solar energetic particles(SEPs) pose one of the most serious hazards to spacecraft systems and constrain human activities in space. Thus, it is of importance to forecast SEP events. Several theories and numerical models are applied to simulate SEP events. Each model makes some assumptions to simplify the complex acceleration and transportation processes within such events. In general, SEP will interact with ambient solar wind and background magnetic field during transportation. It is recognized that interplanetary transport effects must be taken into account at any analysis of SEP propagation. In the previous simulation, it always assumed Parker magnetic field and fixed solar wind speed as the input parameters. However, these assumptions are too simple when compared with the real conditions. In order to get better results, it is necessary to use more accurate background conditions. Recently, we change the fixed solar wind speed into spatial-dependent speed profile based on Parker's theory, and replace the Parker magnetic field with another Parker-like magnetic field based on in situ data at 1 AU. By solving the focused transport equation with simulation of time-backward stochastic processes method, our results show that:(1) Under fast solar wind speed assumption, it is clear that the omnidirectional flux decreases faster than that for the situation with slow solar wind speed in the decay phase. We suggest that it is due to the adiabatic cooling effect. Fast solar wind speed has a significant effect on the adiabatic cooling, which leads the SEPs to lose energy more quickly during transportation. However, slow solar wind speed has less impact on the time profiles of SEP flux and anisotropy. We also compare the time profiles of SEP event observed at different observatories and energies, the results remain the same as previous;(2) When applying in situ data of magnetic field observed by WIND during different Carrington Rotations, the omnidirectional flux time profiles vary greatly, and the main results are as followings:the peak flux appears to be delayed, multi-peak occur, anisotropy also has some differences.We think it results from the magnetic field polarity, which affects the pitch angle, and, furthermore, modulates the momentum. The characteristics are similar in solar minimum and solar maximum, while the peaks seem to be more when solar activity is active. We conclude that the real magnetic field polarity may exert a significant influence during the propagation of SEP. In the future, we will try to use the real-time background conditions which obtain from MHD models in our simulations, in order to make a thorough study of the SEP propagation.

Key words: Solar energetic particle, Magnetic field, Solar wind, Interplanetary transport

中图分类号: 

  • P354
Barouch E, Burlaga L F. 1976. Three-dimensional interplanetary stream magnetism and energetic particle motion.J. Geophys. Res., 81(13):2103-2110, doi:10.1029/JA081i013p02103.
Feng X S, Yang L P, Xiang C Q, et al. 2010. Three-dimensional solar WIND modeling from the sun to earth by a SIP-CESE MHD model with a six-component grid.Astrophys. J., 723(1):300-319, doi:10.1088/0004-637X/723/1/300.
Feng X S, Jiang C W, Xiang C Q, et al. 2012. A data-driven model for the global coronal evolution.Astrophys. J., 758(1), doi:10.1088/0004-637X/758/1/62.
Florens M S L, Cairns I H, Knock S A,et al. 2007. Data-driven solar wind model and prediction of type Ⅱ bursts. Geophys. Res. Lett., 34(4):L04104, doi:10.1029/2006GL028522.
Gopalswamy N S, Yashiro S, Michałek G, et al. 2002. Interacting coronal mass ejections and solar energetic particles.Astrophys. J., 572(1):L103-L107, doi:10.1086/341601.
Heras A M, Sanahuja B, Lario D, et al. 1995. Three low-energy particle events:modeling the influence of the parent interplanetary shock. Astrophys. J., 445(1):497-508, doi:10.1086/175714.
Kallenrode M B. 2003. Current views on impulsive and gradual solar energetic particle events.Journal of Physics G:Nuclear and Particle Physics, 29(5):965-981, doi:10.1088/0954-3899/29/5/316.
Kallenrode M B,Wibberenz G. 1997. Propagation of particles injected from interplanetary shocks:A black box model and its consequences for acceleration theory and data interpretation.J. Geophys. Res., 102(A10):22311-22334, doi:10.1029/97JA01677.
Lario D, Sanahuja B, Heras A M. 1997. Modeling the interplanetary propagation of 0.1~20 MeV shock-accelerated protons. I:Effects of the adiabatic deceleration and solar wind convection. Adv. Space Res., 20(1):115-120, doi:10.1016/S0273-1177(97)00492-4.
Lario D, Roelof E C, Decker R B, et al. 2003. Solar maximum low-energy particle observations at heliographic latitudes above 75 degrees.Advances in Space Research, 32(4):579-584, doi:10.1016/S0273-1177(03)00339-9.
Lario D. 2005.Advances in modeling gradual solar energetic particle events.Advances in Space Research, 36(12):2279-2288, doi:10.1016/j.asr.2005.07.081.
Lario D, Decker R B, Malandraki O E, et al. 2008. Influence of large-scale interplanetary structures on energetic particle propagation:September 2004 event at Ulysses and ACE. J. Geophys. Res., 113(A3):A03105, doi:10.1029/2007JA012721.
Li G, Zank G P, Rice W K M. 2003. Energetic particle acceleration and transport at coronal mass ejection-driven shocks. J. Geophys. Res., 108(A2):1082, doi:10.1029/2002JA009666.
Li G, Moore R, Mewaldt R A, et al. 2012.A Twin-CME scenario for ground level enhancement events.Space Science Reviews, 171(1-4):141-160, doi:10.1007/s11214-011-9823-7.
Malandraki O E, Marsden R G, Tranquille C,et al. 2007. Energetic particle observations by Ulysses during the declining phase of solar cycle 23. J. Geophys. Res., 112(A6):A06111, doi:10.1029/2006JA011876.
Parker E N. 1958.Dynamics of the interplanetary gas and magnetic fields.Astrophys. J., 128:664-676, doi:10.1086/146579.
Qin G, Zhang M, Dwyer J R. 2006. Effect of adiabatic cooling on the fitted parallel mean free path of solar energetic particles.J. Geophys. Res., 111(A8):A08101, doi:10.1029/2005JA011512.
Rodríguez-Gasén R. 2011. Modelling SEP events:latitudinal and longitudinal dependence of the injection rate of shock-accelerated protons and their flux profiles[Ph. D. thesis]. Barcelona:Universitatde Barcelona.
Ruffolo D. 1995.Effect of adiabatic deceleration on the focused transport of solar cosmic rays.Astrophys. J., 442(2):861-874, doi:10.1086/175489.
Shen C L, Wang Y M, Ye P Z, et al. 2008. Enhancement of solar energetic particles during a shock-magnetic cloud interacting complex structure.Solar Physics, 252(2):409-418, doi:10.1007/s11207-008-9268-7.
Shen C L, Li G, Kong X, et al. 2013. Compound twin coronal mass ejections in the 2012 May 17 GLE event. Astrophys. J., 763(2):114-121, doi:10.1088/0004-637X/763/2/114.
Shen F, Feng X S, Wu S T, et al. 2011. Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model.J. Geophys. Res., 116(A4):A04102, doi:10.1029/2010JA015809.
Shen F, Shen C L, Zhang J, et al. 2014. Evolution of the 12 July 2012 CME from the Sun to the Earth:Data-constrained three-dimensional MHD simulations.J. Geophys. Res., 119(9):7128-7141, doi:10.1002/2014JA020365.
Wang Y, Qin G, Zhang M. 2012. Effects of perpendicular diffusion on energetic particles accelerated by the interplanetary coronal mass ejection shock.Astrophys. J., 752(1):37, doi:10.1088/0004-637X/752/1/37.
Wang Y M, Sheeley N R Jr, Socker D G, et al. 2000.The dynamical nature of coronal streamers.J. Geophys. Res., 105(A11):25133-25142, doi:10.1029/2000JA000149.
Wei W W, Shen F, Zuo P B. 2015.Research progress on the solar energetic particle model based on magnetohydrodynamic simulation.Progress in Astronomy(in Chinese), 33(1):1-26, doi:10.3969/j.issn.1000-8349.2015.01.01.
Zhang M. 1999. A Markov stochastic process theory of cosmic-ray modulation.Astrophys. J., 513(1):409-420, doi:10.1086/306857.
Zhang M, Qin G, Rassoul H. 2009. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields.Astrophys. J., 692(1):109-132, doi:10.1088/0004-637X/692/1/109.
涂传诒等. 1988. 日地空间物理学. 北京:科学出版社.
魏稳稳, 沈芳, 左平兵. 2015. 基于磁流体力学模拟的太阳高能粒子物理模式研究进展. 天文学进展, 33(1):1-26, doi:10.3969/j.issn.1000-8349.2015.01.01.
[1] 冯彦;蒋勇;孙涵;安振昌;黄娅. 地磁场三维曲面Spline模型[J]. 地球物理学报, 2018, 61(4): 1352-1365.
[2] 董超;焦立果;张怀;程惠红;石耀霖. 外核黏性对地磁场发电机数值模型的影响[J]. 地球物理学报, 2018, 61(4): 1366-1377.
[3] 王书明;底青云;王若;苏晓璐;Mohamed A. 三维MCSEM利用电磁场分解消除空气波效应[J]. 地球物理学报, 2018, 61(2): 742-749.
[4] 王贺元;薛国强;郭华;周楠楠. 均匀半空间瞬变电磁场直接时域响应数值分析[J]. 地球物理学报, 2018, 61(2): 750-755.
[5] 文丽敏;康国发;白春华;高国明;郑安燃;安柏林. 云南地区地壳磁异常与地质构造[J]. 地球物理学报, 2017, 60(9): 3493-3504.
[6] 冯彦;孙涵;蒋勇;安振昌;姜乙;刘宝嘉;黄娅;张华;武业文. 基于CHAMP卫星与地面矢量数据联合建立中国地磁模型[J]. 地球物理学报, 2017, 60(7): 2522-2533.
[7] 代佳龙;杜爱民;区家明;张莹;赵琳;易忠;孟立飞;王斌. 海浪引起的地磁场波动的观测与初步分析[J]. 地球物理学报, 2017, 60(4): 1521-1526.
[8] 卢杰;李予国. 无网格局部Petrov-Galerkin法大地电磁场二维正演模拟[J]. 地球物理学报, 2017, 60(3): 1189-1200.
[9] 关威;姚泽鑫;胡恒山. 声电效应测井的有限差分模拟[J]. 地球物理学报, 2017, 60(11): 4516-4526.
[10] 张超;刘国强. 基于周向磁场有限元方法的双侧向测井影响因素分析[J]. 地球物理学报, 2017, 60(1): 441-450.
[11] 张素琴;付长华;赵旭东. 基于三维Taylor模型的福建及邻近地区地磁模型研究[J]. 地球物理学报, 2016, 59(6): 1948-1956.
[12] 陈鼎新;刘代志;曾小牛;孟亮;杨晓君. 时空Kriging算法在区域地磁场插值中的应用及改进[J]. 地球物理学报, 2016, 59(5): 1743-1752.
[13] 陈斌;倪喆;徐如刚;顾左文;袁洁浩;王雷. 2010.0年中国及邻近地区地磁场[J]. 地球物理学报, 2016, 59(4): 1446-1456.
[14] 张帅;田安民;史全岐;孙为杰;尧中华;傅绥燕;宗秋刚;濮祖荫. 中近磁尾等离子体片统计特性研究[J]. 地球物理学报, 2016, 59(2): 411-418.
[15] 张光;张英堂;尹刚;任国全;李志宁;范红波. 一种磁张量探测系统载体的磁张量补偿方法[J]. 地球物理学报, 2016, 59(1): 311-317.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!