地球物理学报 ›› 2016, Vol. 59 ›› Issue (1): 169–173.doi: 10.6038/cjg20160114

• 地球动力学·地震学·地磁学·地电学 • 上一篇    下一篇

地震触发研究中库仑应力随摩擦系数增加而增大的矛盾及其解决

朱守彪1,2, 缪淼1   

  1. 1. 中国地震局地壳应力研究所(地壳动力学重点实验室), 北京 100085;
    2. 中国科学院计算地球动力学重点实验室, 北京 100049
  • 收稿日期:2014-09-18 修回日期:2015-09-15 出版日期:2016-01-05
  • 作者简介:朱守彪,男,1964年生,研究员,理学博士.主要从事地球动力学及地震活动性研究.E-mail:zhushoubiao@gmail.com
  • 基金资助:

    国家自然科学基金项目(41574041),北京市自然科学基金项目(8152034),地震动力学国家重点实验室开放基金项目(LED2012B01),广西科技攻关项目(桂科攻1377002)以及中央级科研院所科研业务专项(ZDJ2014-01)共同资助.

On the study of earthquake triggering:Solution to paradox that Coulomb stresses increase with frictional coefficients

ZHU Shou-Biao1,2, MIAO Miao1   

  1. 1. Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China;
    2. Key Lab of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-09-18 Revised:2015-09-15 Online:2016-01-05

摘要:

近年来,通过计算库仑破裂应力变化研究地震触发及断层的相互作用,进而估计地震灾害已经成为国际上研究的热点.研究中,为考察库仑模型触发地震的效果,计算时往往要改变模型参数进行检验,特别是让有效摩擦系数从0.0到0.8之间变化.许多研究人员的计算结果表明,库仑破裂应力随着摩擦系数的增加而增大,即断层上摩擦系数的增大可以导致触发地震能力的提高.这显然与我们的常识相违背:摩擦总是阻碍断层滑动、抑制地震发生的,即断层面上的摩擦越大,地震越是难以被触发.文中通过对库仑破裂应力的计算公式进行详细分析后发现,之所以出现摩擦越大,地震越容易被触发的现象,其原因是研究者在计算中没有考虑在构造应力作用的环境里,摩擦系数本身的变化所带来的附加库仑应力变化.若某个地震使一个位于地下15 km的典型断层面上的正应力增加2 MPa,如果只考虑静岩压力,当摩擦系数从0.3增大到0.4后,传统库仑破裂应力变化为0.8 MPa;而综合库仑应力变化则大约为-39.2 MPa.所以,若从整体上来分析断层在地震位错及摩擦系数变化所造成的综合库仑应力改变,就不可能出现库仑应力随摩擦系数增加而增加的不正常现象.由此可见,今后在利用库仑模型研究地震触发问题时,应综合考虑构造应力场及摩擦系数本身变化所带来的库仑应力变化.

关键词: 库仑破裂应力, 地震触发, 摩擦系数, 综合库仑应力

Abstract:

Coulomb stress change calculation has been playing an important part in investigating fault interactions and earthquake triggering. However, the results of most workers showed that Coulomb stress changes(or earthquake triggering effects) would become larger and larger with the increase of apparent frictional coefficients. This phenomenon is clearly in contradiction with our common knowledge in which frictional stress should resist fault slip and inhibit earthquakes under any circumstances. By analyzing the formula for calculating Coulomb stress changes(ÄCFS), we found that previous research did not take into account the additional ÄCFS which are only resulted from the variations of frictional coefficients. Suppose the depth of typical receiver fault is 15 km, the value of combined ÄCFS will be as large as about 39.2 MPa when the variation of apparent friction coefficient is 0.1(e.g., from 0.3 to 0.4), whereas traditional ÄCFS is only 0.8 MPa. If we incorporated the additional ÄCFS in calculation, the above contradiction will disappear completely. Therefore, it is suggested that we should consider changes of combined ÄCFS due to the variation of the friction coefficient, especially when we compare different Coulomb stress models with different apparent frictional coefficients.

Key words: Coulomb failure stress, Earthquake triggering, Frictional coefficient, Combined Coulomb stress

中图分类号: 

  • P315

Bilek S L, Lithgow-Bertelloni C L. 2005. Stress changes in the Costa Rica subduction zone due to the 1999Mw=6.9 Quepos earthquake. Earth Planet. Sci. Lett., 230(1-2):97-112.
Deng J S, Sykes L R. 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquakes:A 200-year perspective. J. Geophys. Res., 102(B5):9859-9886.
Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer. Nature, 411(6834):180-183.
Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci.,33:335-367.
Gahalaut K, Gahalaut V K. 2008. Stress triggering of normal aftershocks due to strike slip earthquakes in compressive regime. Journal of Asian Earth Sciences, 33(5-6):379-382.
Harris R A, Simpson R W. 1992. Changes in static stress on southern California faults after the 1992 Landers earthquake. Nature, 360(6401):251-254.
Harris R A, Simpson R W, Reasenberg P A. 1995. Influence of static stress changes on earthquake locations in southern California. Nature, 375(6528):221-224.
Harris R A. 1998. Introduction to special section:Stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research:Solid Earth(1978-2012), 103(B10):24347-24358.
King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3):935-953.
King G C P, Cocco M. 2001. Fault interaction by elastic stress changes:New clues from earthquake sequences. Advances in Geophysics, 44:1-38, I-VIII1-36.
Miao M, Zhu S B. 2012. A study of the impact of static Coulomb stress changes of megathrust earthquakes along subduction zone on the following aftershocks. Chinese J. Geophys.(in Chinese), 55(9):2982-2993, doi:10.6038/j.issn.0001-5733.2012.09.017.
Miao M, Zhu S B. 2013. The static Coulomb stress change of the 2013 Lushan Ms7.0 earthquake and its impact on the spatial distribution of aftershocks. Acta Seismologica Sinica(in Chinese), 35(5):619-631.
Nostro C, Cocco M, Belardinelli M E. 1997. Static stress changes in extensional regimes:an application to southern Apennines(Italy). Bulletin of the Seismological Society of America, 87(1):234-248.
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4):1135-1154.
Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2):1018-1040.
Parsons T, Stein R S, Simpson R W, Reasenberg P Aet al. 1999. Stress sensitivity of fault seismicity:A comparison between limited-offset oblique and major strike-slip faults. Journal of Geophysical Research:Solid Earth(1978-2012), 104(B9):20183-20202.
Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203):509-510.
Reasenberg P A, Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science, 255(5052), 1687-1690.
Shi Y L. 2001. Stress triggers and stress shadows:How to apply these concepts to earthquake prediction. Earthquake(in Chinese)., 21(3):1-7.
Simpson R W, Reasenberg P A. 1994. Earthquake-induced static stress changes on central California faults.//Simpson R W ed. The Loma Prieta, California Earthquake of October 17, 1989-Tectonic Processes and Models. U S Geol Surv Prof Pap, 55-89.
Stein R S, Barka A A, Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3):594-604.
Stein R S. 1999. The role of stress transfer in earthquake occurrence. Nature, 402(6762):605-609.
Toda S, Lin J, Meghraoui M, Stein R Set al. 2008. 12 May 2008M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett., 35(17):L17305.
Toda S, Lin J, Stein R S. 2011. Using the 2011Mw=9.0 off the Pacific coast of Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure. Earth, Planets and Space, 63(7):725-730.
Wan Y G, Wu Z L, Zhou G W, Huang Jet al. 2000. "Stress triggering" between different rupture events in several earthquakes. Acta Seismologica Sinica(in Chinese), 2000, 22(6):568-576.
Zhang Z Q, Chen J Y S, Lin J. 2008. Stress interactions between normal faults and adjacent strike-slip faults in of 1997 Jiashi earthquake group 1997 swarm. Sci. China Earth Sci., 3851(3):334431-342440.
Zhu S B, Miao M. 2015. How did the 2013 Lushan earthquake(Ms=7.0) trigger its aftershocks? Insights from static Coulomb stress changes calculations. Pure and Applied Geophysics, 172(10):2481-2494.
缪淼, 朱守彪. 2012. 俯冲带上特大地震静态库仑应力变化对后续余震触发效果的研究. 地球物理学报, 55(9),:2982-2993, doi:10.6038/j.issn.0001-5733.2012.09.017.
缪淼, 朱守彪. 2013. 2013年芦山Ms7.0地震产生的静态库仑应力变化及其对余震空间分布的影响. 地震学报, 35(5):619-631.
石耀霖. 2001. 关于应力触发和应力影概念在地震预报中应用的一些思考. 地震, 21(3):1-7.
万永革, 吴忠良, 周公威等. 2000. 几次复杂地震中不同破裂事件之间的"应力触发"问题. 地震学报, 22(6):568-576.
张竹琪, 陈永顺, 林间. 2008. 1997年伽师震群中相邻正断层和走滑断层之间相互应力作用. 中国科学:D辑, 38(3):334-342.

[1] 缪淼;朱守彪. 流-固耦合作用对计算同震静态库仑应力变化的影响[J]. 地球物理学报, 2017, 60(4): 1457-1469.
[2] 徐晶;邵志刚;刘静;季灵运. 基于库仑应力变化分析巴颜喀拉地块东端的强震相互关系[J]. 地球物理学报, 2017, 60(10): 4056-4068.
[3] 王琼;解朝娣;冀战波;刘建明. 2014年于田MS7.3地震对后续余震和远场小震活动的动态应力触发[J]. 地球物理学报, 2016, 59(4): 1383-1393.
[4] 冯永革;王海洋;陈永顺;黄清华. 1989-1999大同地震序列的隐伏断层研究:库仑应力分析和余震JHD重定位[J]. 地球物理学报, 2016, 59(2): 568-577.
[5] 孙长青;阎春恒;吴小平;许亚吉. 青藏高原东部及邻区地震断层面上的潮汐应力触发效应[J]. 地球物理学报, 2014, 57(7): 2054-2064.
[6] 解朝娣;雷兴林;吴小平;虎雄林;赵小艳;朱荣欢. MS8.0汶川地震对MS7.0芦山地震成核失稳的影响[J]. 地球物理学报, 2014, 57(6): 1825-1835.
[7] 路珍;何昌荣. 热水条件下黑云母断层泥的摩擦强度与稳定性[J]. 地球物理学报, 2014, 57(4): 1123-1132.
[8] 任凤文;何昌荣. 热水条件下花岗质糜棱岩的摩擦滑动实验研究[J]. 地球物理学报, 2014, 57(3): 877-883.
[9] 王成虎;宋成科;郭启良;张彦山;丁健民. 利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J]. 地球物理学报, 2014, 57(1): 102-114.
[10] 仲秋;史保平. 关于Coulomb应力变化/扰动作用下的Dieterich余震触发机制的广义解[J]. 地球物理学报, 2013, 56(5): 1526-1537.
[11] 单斌;李佳航;韩立波;房立华;杨嵩;金笔凯;郑勇;熊熊. 2010年MS7.1级玉树地震同震库仑应力变化以及对2011年MS5.2级囊谦地震的影响[J]. 地球物理学报, 2012, 55(09): 3028-3042.
[12] 单斌;熊熊;金笔凯;郑勇. 松潘-甘孜块体东北端强震间相互作用及地震危险性研究[J]. 地球物理学报, 2012, 55(07): 2329-2340.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!