地球物理学报 ›› 2015, Vol. 58 ›› Issue (12): 4388–4402.doi: 10.6038/cjg20151205

• 成矿带深部构造背景与成矿 • 上一篇    下一篇

长江中下游成矿带及邻区地壳剪切波速度结构和径向各向异性

欧阳龙斌1,2, 李红谊1,3, 吕庆田4, 李信富3, 江国明3, 张贵宾3, 史大年4, 郑丹3, 张冰3, 李佳鹏3   

  1. 1. 地下信息探测技术与仪器教育部重点实验室(中国地质大学, 北京), 北京 100083;
    2. 广东省地震局, 广州 510070;
    3. 中国地质大学(北京), 地球物理与信息技术学院, 北京 100083;
    4. 中国地质科学院矿产资源研究所, 国土资源部成矿作用和资源评价重点实验室, 北京 100037
  • 收稿日期:2015-05-16 修回日期:2015-10-22 出版日期:2015-12-20
  • 通讯作者: 李红谊,教授,主要从事地震波传播和地球内部结构研究.E-mail:lih@cugb.edu.cn E-mail:lih@cugb.edu.cn
  • 作者简介:欧阳龙斌,男,1989年生,硕士研究生,主要从事背景噪声和远震面波层析成像研究.E-mail:ouyang10108326@126.com
  • 基金资助:
    中国地质调查局地质调查工作项目(1212011220243,1212011220244)和国家深部探测专项第3项目(SinoProbe-03),国家自然科学基金项目(41374057),教育部"新世纪优秀人才支持计划"和中央高校基本科研业务费专项资金资助.

Crustal shear wave velocity structure and radial anisotropy beneath the Middle-Lower Yangtze River metallogenic belt and surrounding areas from seismic ambient noise tomography

OUYANG Long-Bin1,2, LI Hong-Yi1,3, LV Qing-Tian4, LI Xin-Fu3, JIANG Guo-Ming3, ZHANG Gui-Bin3, SHI Da-Nian4, ZHENG Dan3, ZHANG Bing3, LI Jia-Peng3   

  1. 1. Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China;
    2. Earthquake Administration of Guangdong Province, Guangzhou 510070, China;
    3. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China;
    4. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2015-05-16 Revised:2015-10-22 Online:2015-12-20

摘要: 收集了安徽、江西、浙江、江苏、湖北和河南6个省的区域地震台网138个宽频地震台站以及中国地质大学(北京)在长江中下游成矿带布设的19个流动宽频地震台站的三分量背景噪声数据,利用背景噪声面波层析成像方法,获得了长江中下游成矿带及其邻区地壳三维剪切波速度结构和径向各向异性特征.首先获得了5~38 s周期的瑞利波和勒夫波相速度,结果显示短周期( < 16 s)的瑞利波和勒夫波相速度与研究区内的主要地质构造单元具有良好的相关性,但在中长周期(20~30 s)瑞利波相速度显示大别造山带东部为明显低速特征,而勒夫波相速度并未表现出异常特征.研究区域地壳三维有效剪切波速度和径向各向异性结果显示:苏北盆地和江汉盆地上地壳都表现为低速和正径向各向异性特征,华北克拉通东南部也表现为正径向各向异性,这可能与盆地浅部沉积层的水平层理结构相关.大别造山带中地壳显示为弱的正径向各向异性,同时其东部下地壳显示为低剪切波速度和强的正径向各向特征,可能是由于其在造山后发生了中下地壳的流变变形,引起各向异性矿物近水平排列所导致的.长江中下游成矿带内的鄂东南和安庆—贵池矿集区中地壳弱的负径向各向异性可能是由于深部岩浆向上渗透时所产生的有限应力导致结晶各向异性矿物的垂直排列所引起的.整个长江中下游成矿带下地壳都表现出正径向各向异性特征,可能是由于在伸展拉张的构造作用力下,下地壳矿物的晶格优势水平排列所引起的.

关键词: 长江中下游成矿带, 背景噪声层析成像, 径向各向异性

Abstract: The crustal anisotropy of the Middle-Lower Yangtze River region is critical for observation of crustal deformation and understanding its deep geodynamic process. In this paper, through analysis of Rayleigh waves and Love waves using empirical Green's functions estimated from ambient noise tomography, we continue our previous work of imaging isotropic shear velocity to study the crustal radial anisotropy beneath the Middle-Lower Yangtze River Metallogenic belt and its surrounding areas. The data include 14 months (from July 2012 to August 2013) three-component continuous ambient noise data recorded at 138 seismic stations of newly upgraded China Provincial Digital Seismic Networks (Anhui, Jiangxi, Zhejiang, Jiangsu, Hubei and Henan) and 19 temporary seismic stations deployed by China University of Geosciences (Beijing). Firstly, these phase velocity dispersion curves between 5 and 38 s periods are measured from those three-component cross-correlation functions for each interstation path by using the automatic time-frequency analysis method with phase-matched processing. Then the study area is divided into a 0.5°×0.5° grid to invert the Rayleigh and Love wave phase velocity distributions with the Occam inversion method. At short periods ( < 16 s), the Rayleigh and Love wave phase velocity maps both show clear lateral variations which correlate well with major geological structures and tectonic units in the study region. The basins show low velocities, including the Jianghan, Hehuai, Subei, Hefei and Nanyang basins, but the Dabie orogenic belt and the Lower Yangtze Craton show high velocity. At intermediate-to-long periods (20~30 s), it is noticeable that the eastern Dabie orogenic belt is featured with low velocity only on the Rayleigh wave phase velocity map. Finally, we determine the crustal shear wave velocity and radial anisotropy by inverting the local phase velocity dispersion curves of Rayleigh and Love waves. In the upper crust, strong positive radial anisotropy and low shear wave velocity are imaged in the southeast of the North China Craton, Subei and Jianghan basins. Due to thick sedimentary cover in these areas, this strong positive radial anisotropy at shallow depths can be interpreted in terms of the horizontally layered sedimentary with larger velocity in the horizontal than in the vertical direction. In the Dabie orogenic belt, the radial anisotropy is weakly positive in the middle crust. Meanwhile strong radial anisotropy and low velocity in the lower crust beneath the eastern Dabie orogenic belt is imaged. The anisotropy could be caused by sub-horizontal mica fabric due to rheological deformation in the deep crustal zones. In the middle crust of southeastern Hubei and Anqing-Guichi ore districts of the Middle-Lower Yangtze River metallogenic belt, the negative radial anisotropy may result from crystalized anisotropic minerals aligned vertically induced by finite strain associated with the vertical intrusion of deep magma. The most striking feature of our crustal radial anisotropy model is the strong positive radial anisotropy observed in the lower crust beneath the Middle-Lower Yangtze River metallogenic belt and southeastern North China Craton. We consider that the strong positive radial anisotropy beneath the metallogenic belt may mainly result from the sub-horizontal alignment of seismically anisotropic crustal minerals induced by the finite strain accompanying extension.

Key words: Middle-Lower Yangtze River metallogenic belt, Ambient noise tomography, Radial anisotropy

中图分类号: 

  • P315
Anderson D L. 1961. Elastic wave propagation in layered anisotropic media. J. Geophys. Res., 66(9): 2953-2963.
Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x.
Chang Y F, Liu X P, Wu Y C. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River (in Chinese). Beijing: Geol. Pub. House, 1-239.
Cheng C, Chen L, Yao H J, et al. 2013. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications. Gondwana Research, 23(1): 25-38.
Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706.
Constable S C, Parker R L, Constable C G. 1987. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3): 289-300.
Dong S W, Ma L C, Liu G, et al. 2011. On dynamics of the metallogenic belt of middle-lower reaches of Yangtze River, Eastern China. Acta Geologica Sinica (in Chinese), 85(5): 612-625.
Eide E A, Liou J G. 2000. High-pressure blueschists and eclogites in Hong'an: a framework for addressing the evolution of high- and ultrahigh-pressure rocks in central China. Lithos, 52(1-4): 1-22, doi: 10.1016/S0024-4937(99)00081-X.
Faure M, Lin W, Schärer U, et al. 2003. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China). Lithos, 70(3-4): 213-241.
Guo B, Liu Q Y, Chen J H, et al. 2012. P-wave anisotropy of upper-mantle beneath China mainland and adjacent areas. Chinese J. Geophys. (in Chinese), 55(12): 4106-4115, doi: 10.6038/j.issn.0001-5733.2012.12.023.
Hacker B R, Ritzwoller M H, Xie J. 2014. Partially melted, mica-bearing crust in Central Tibet. Tectonics, 33(7): 1408-1424.
Herrmann R B, Ammon C J. 2004. Surface waves, receiver functions and crustal structure. Computer Programs in Seismology, Version 3.30 [Electronic]. Saint Louis Univ, St. Louis, Mo. Available at http://www.eas.slu.edu/People/RBHerrmann/CPS330.html.
Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: examples from Chinese porphyry deposits in continental settings. Geoscience, 21(2): 332-351.
Huang H, Yao H J, van der Hilst R D. 2010. Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry. Geophysical Research Letters, 37(21).
Huang Z X, Su W, Peng Y J, et al. 2003. Rayleigh wave tomography of China and adjacent regions. J. Geophys. Res., 108(B2): 2073, doi: 10.1029/2001JB001696.
Jiang G M, Zhang G B, Lü Q T, et al. 2013. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics. Tectonophysics, 606: 36-47.
Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1): 108-124.
Li H Y, Su W, Wang C Y, et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth and Planetary Science Letters, 282(1-4): 201-211.
Li H Y, Li S T, Song X D, et al. 2012. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography. Geophys. J. Int., 188(1): 131-143 doi: 10.1111/j.1365-246X.2011.05205.x.
Li X H, Li Z X, Li W X, et al. 2013. Revisiting the "C-type adakites" of the Lower Yangtze River Belt, central eastern China: In-situ zircon Hf-O isotope and geochemical constraints. Chemical Geology, 345: 1-15.
Li Y H, Wu Q J, Zhang R Q, et al. 2009. The lithospheric S-velocity structure of the western Yangtze craton inferred from surface waves inversion. Chinese J. Geophys. (in Chinese), 52(7): 1757-1767, doi: 10.3969/j.issn.0001-5733.2009.07.009.
Lin F C, Moschetti M P, Ritzwoller M H. 2008a. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173(1): 281-298, doi: 10.1111/j.1365-246X.2008.03720.x.
Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173(1): 281-298, doi: 10.1111/j.1365-246X.2008.03720.x.
Lin F C, Ritzwoller M H, Yang Y J, et al. 2011. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geoscience, 4(1): 55-61, doi: 10.1038/ngeo1036.
Lin W, Wang Q C, Chen K. 2008b. Phanerozoic tectonics of South China block: New insights from the polyphase deformation in the Yunkai massif. Tectonics, 27(6), doi: 10.1029/2007TC002207.
Ling M X, Wang F Y, Ding X, et al. 2009. Cretaceous ridge subduction along the lower Yangtze River belt, eastern China. Economic Geology, 104(2): 303-321.
Luo Y H, Xu Y X, Yang Y J. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth and Planetary Science Letters, 313-314: 12-22.
Luo Y H, Xu Y X, Yang Y J. 2013. Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography. Geophys. J. Int., 195(2): 1149-1164.
Lü Q T, Hou Z Q, Yang Z, et al. 2005. Underplating in the Middle-Lower Yangtze Valley and model of geodynamic evolution: constraints from geophysical data. Science in China, Series D: Earth Sciences, 48(7): 985-999.
Lü Q T, Yang Z S, Yan J Y, et al. 2007. The metallogenic potential, prospecting idea and primary attempt in depth of the ore belt of the Middle and Lower Reach of the Yangtze River: A case study of Tongling ore district. Acta Geologica Sinica (in Chinese), 81(7): 865-881.
Lü Q T, Yan J Y, Shi D N, et al. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze Metallogenic Belt: An insight into the crustal structure and geodynamics of an ore district. Tectonophysics, 606: 60-77, doi: 10.1016/j.tecto.2013.04.
Lü Q T, Dong S W, Shi D N, et al. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt: A review from SinoProbe. Acta Petrologica Sinica (in Chinese), 30(4): 889-906.
Mao J W, Wang Y T, Lehmann B, et al. 2006. Molybdenite Re-Os and albite40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews, 29(3-4): 307-324.
Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics, 369(3-4): 155-174, doi: 10.1016/S0040-1951(03)00195-1.
Montagner J P. 1998. Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers…. // Geodynamics of Lithosphere & Earth's Mantle. Basel: Birkhäuser Basel, 223-256.
Moschetti M P, Ritzwoller M H, Lin F C, et al. 2010a. Crustal shear wave velocity structure of the western Unites States inferred from ambient seismic noise and earthquake data. J. Geophys. Res., 115: B10306, doi: 10.1029/2010JB007448.
Moschetti M P, Ritzwoller M H, Lin F, et al. 2010b. Seismic evidence for widespread western-US deep-crustal deformation caused by extension. Nature, 464(7290): 885-889.
Nishizawa O, Yoshitno T. 2001. Seismic velocity anisotropy in mica-rich rocks: an inclusion model. Geophysical Journal International, 145(1): 19-32.
Ouyang L B, Li H Y, Lü Q T, et al. 2014. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle-Lower Yangtze River region. Earth and Planetary Science Letters, 408: 378-389, doi: 10.1016/j.epsl.2014.10.017.
Pan Y M, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177-242.
Peng Y J, Huang Z X, Su W, et al. 2007. Anisotropy in crust and upper mantle beneath China continent and its adjacent seas. Chinese J. Geophys. (in Chinese), 50(3): 752-759.
Qiu H J, Xu Z Q, Qiao D W. 2006. Progress in the study of the tectonic evolution of the Subei basin, Jiangsu, China. Geological Bulletin of China, 25(9-10): 1117-1120.
Ren J Y, Tamaki K, Li S T, et al. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205.
Shapiro N M, Ritzwoller M H, Molnar P, et al. 2004. Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305(5681): 233-236.
Shi D N, Lü Q T, Xu W Y, et al. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization. Tectonophysics, 606: 48-59.
Wang B J. 2006. The structural envolution and favorable exploration areas in Jianghan basin[Ph.D. thesis] (in Chinese). Beijing: China University of Geosciences (Beijing).
Wang Y. 2006. The onset of the Tan-Lu fault movement in eastern China: constraints from zircon (SHRIMP) and 40Ar/39Ar dating. Terra Nova, 18(6): 423-431.
Wang Y S, Wang H F, Sheng Y, et al. 2014. Early Cretaceous uplift history of the Dabie orogenic belt: Evidence from pluton emplacement depths. Science China Earth Sciences, 57(5): 1129-1140, doi: 10.1007/s11430-013-4659-5.
Weiss T, Siegesmund S, Rabbel W, et al. 1999. Seismic velocities and anisotropy of the lower continental crust: a review. Pure and Applied Geophysics, 156(1-2): 97-122, doi: 10.1007/s000240050291.
Wu F Y, Lin J Q, Wilde S A, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119, doi: 10.1016/j.epsl.2005.02.019.
Xie J Y, Ritzwoller M H, Shen W S, et al. 2013. Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. J. Geophys. Res.: Solid Earth, 118(8): 4226-4252, doi: 10.1002/jgrb.50296.
Yang P X, Gao Z W, Zhang J. 2009. Structure model and evolution of the Jianghan basin and relation with moderate to strong earthquakes. Earthquake (in Chinese), 29(4): 123-130.
Yang Y J, Ritzwoller M H, Levshin A L, et al. 2007. Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1): 259-274.
Ye Q D. 2014. Ambient noise tomography in Dabie-Sulu region and locating the microearthquakes near the Wenchuan Fault Scientific Drilling[Ph. D. thesis] (in Chinese). Beijing: Institute Geophysics of China Earthquake Administration.
Yi G X, Yao H J, Zhu J S, et al. 2010. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy. Chinese J. Geophys. (in Chinese), 53(2): 256-268, doi: 10.3969/j.issn.0001-5733.2010.02.004.
Zhang R Y, Liou J G, Ernst W G. 2009. The Dabie-Sulu continental collision zone: a comprehensive review. Gondwana Research, 16(1): 1-26.
Zhang Y Q, Dong S W, Li J H, et al. 2012. The new progress in the study of mesozoic tectonics of South China. Acta Geoscientia Sinica (in Chinese), 33(3): 257-279.
Zhang Y Q, Lü Q T, Teng J W, et al. 2014. Discussion on the crustal density structure and deep mineralization background in the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from the gravity inversion. Acta Petrologica Sinica (in Chinese), 30(4): 931-940.
Zhang Z J, Xu Z H. 2013. Seismology encyclopedic knowledge (five)—Seismic anisotropy. Recent Developments in World Seismology (in Chinese), (6): 34-41.
Zheng T Y, Zhao L, He Y M, et al. 2014. Seismic imaging of crustal reworking and lithospheric modification in eastern China. Geophysical Journal International, 196(2): 656-670.
Zheng Y F, Fu B, Gong B, et al. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Science Reviews, 62(1-2): 105-161.
Zhu G, Xie C L, Chen W, et al. 2010. Evolution of the Hongzhen metamorphic core complex: Evidence for Early Cretaceous extension in the eastern Yangzte craton, eastern China. Geological Society of America Bulletin, 122(3-4): 506-516.
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 1-239.
董树文, 马立成, 刘刚等. 2011. 论长江中下游成矿动力学. 地质学报, 85(5): 612-625.
郭飚, 刘启元, 陈九辉等. 2012. 中国大陆及邻区上地幔P波各向异性结构. 地球物理学报, 55(12): 4106-4115, doi: 10.6038/j.issn.0001-5733.2012.12.023.
李永华, 吴庆举, 张瑞青等. 2009. 用面波方法研究上扬子克拉通壳幔速度结构. 地球物理学报, 52(7): 1757-1767, doi: 10.3969/j.issn.0001-5733.2009.07.009.
吕庆田, 杨竹森, 严加永等. 2007. 长江中下游成矿带深部成矿潜力、找矿思路与初步尝试——以铜陵矿集区为实例. 地质学报, 81(7): 865-881.
吕庆田, 董树文, 史大年等. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型: 深部探测(SinoProbe)综述. 岩石学报, 30(4): 889-906.
彭艳菊, 黄忠贤, 苏伟等. 2007. 中国大陆及邻区海域地壳上地幔各向异性研究. 地球物理学报, 50(3): 752-759.
邱海峻, 许志琴, 乔德武. 2006. 苏北盆地构造演化研究进展. 地质通报, 25(9-10): 1117-1120.
王必金. 2006. 江汉盆地构造演化与勘探方向[博士论文]. 北京: 中国地质大学(北京).
王勇生, 王海峰, 盛勇等. 2014. 大别造山带早白垩世抬升演化研究——来自岩体侵位深度的证据. 中国科学: 地球科学, 44(2): 200-212.
杨攀新, 高战武, 张俊. 2009. 江汉盆地构造模式和演化及其与中强地震关系研究. 地震, 29(4): 123-130.
叶庆东. 2014. 大别苏鲁地区背景噪声成像与汶川地震科学钻探井孔附近微震定位[博士论文]. 北京: 中国地震局地球物理研究所.
易桂喜, 姚华建, 朱介寿等. 2010. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征. 地球物理学报, 53(2): 256-268, doi: 10.3969/j.issn.0001-5733.2010.02.004.
张岳桥, 董树文, 李建华等. 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279.
张永谦, 吕庆田, 滕吉文等. 2014. 长江中下游及邻区的地壳密度结构与深部成矿背景探讨——来自重力学的约束. 岩石学报, 30(4): 931-940.
张忠杰, 许忠淮. 2013. 地震学百科知识(五)——地震各向异性. 国际地震动态, (6): 34-41.
[1] 吴珊珊;姜明明;何玉梅;赵亮;艾印双. 利用背景噪声成像研究合肥-金华剖面地壳速度结构及径向各向异性的东西差异[J]. 地球物理学报, 2018, 61(2): 584-592.
[2] 付媛媛;高原. 东北地区背景噪声的Rayleigh和Love波相速度层析成像[J]. 地球物理学报, 2016, 59(2): 494-503.
[3] 吕庆田;董树文;汤井田;史大年;常印佛;SinoProbe-0-CJ项目组. 多尺度综合地球物理探测:揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展[J]. 地球物理学报, 2015, 58(12): 4319-4343.
[4] 吕庆田;刘振东;董树文;严加永;张永谦. “长江深断裂带”的构造性质:深地震反射证据  [J]. 地球物理学报, 2015, 58(12): 4344-4359.
[5] 张明辉;徐涛;吕庆田;白志明;武澄泷;武振波;滕吉文. 长江中下游成矿带及邻区三维Moho面结构:来自人工源宽角地震资料的约束[J]. 地球物理学报, 2015, 58(12): 4360-4372.
[6] 徐峣;吕庆田;张贵宾;江国明;张昌榕;单希鹏;吴强. 长江中下游成矿带三维S波速度结构及对深部过程的约束[J]. 地球物理学报, 2015, 58(12): 4373-4387.
[7] 王显莹;汤井田;张林成;薛帅;潘伟;周聪;肖晓;任政勇;吕庆田. 长江中下游成矿带中段岩石圈电性结构研究[J]. 地球物理学报, 2015, 58(12): 4403-4414.
[8] 陈明春;刘振东;吕庆田;杨文平;严加永;赵金花. 结晶岩地区深地震数据采集关键技术与方法[J]. 地球物理学报, 2015, 58(12): 4544-4558.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!