地球物理学报 ›› 2015, Vol. 58 ›› Issue (12): 4617–4627.doi: 10.6038/cjg20151223

• 深部资源探测技术与方法地震技术 • 上一篇    下一篇

平均入射角道集PP波与PS波联合反演

石瑛1, 芦俊1, 杨震1, 杨春2   

  1. 1. 中国地质大学(北京)能源学院, 海相储层演化与油气富集机理教育部重点实验室, 北京 100083;
    2. 中国地质大学(北京)地球物理与信息技术学院, 北京 100083
  • 收稿日期:2015-04-24 修回日期:2015-12-01 出版日期:2015-12-20
  • 通讯作者: 芦俊,男,副教授,主要从事多分量地震技术的研究工作.E-mail:lujun615@163.com E-mail:lujun615@163.com
  • 作者简介:石瑛,女,博士后,从事多分量地震解释与反演的研究.E-mail:quartzsy@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金(2652013093)、北京高等学校青年英才计划项目(YETP0661)、国家高技术研究发展计划(863计划)课题(2013AA064201)和国家自然科学基金项目(41574126,41425017)资助.

Joint PP- and PS-wave inversion of gathers with average incident angles

SHI Ying1, LU Jun1, YANG Zhen1, YANG Chun2   

  1. 1. School of Energy Resources, Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, China University of Geosciences, Beijing 100083, China;
    2. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
  • Received:2015-04-24 Revised:2015-12-01 Online:2015-12-20

摘要: 在界面两侧地层的弹性参数弱反差的假设难以成立的情况下,本文提出用平均入射角道集进行PP波与PS波的联合反演.首先,在PP波与PS波AVA(amplitude versus angle,振幅随入射角变化)道集的基础上,分别选择小入射角范围与大入射角范围的AVA道集进行局部加权叠加,以获得由两个角度组成的平均入射角道集,并作为后续反演的输入数据.然后,再通过最小二乘原理建立了PP波与PS波联合反演目标函数,推导了模型修改量的向量公式,建立了平均入射角道集联合反演的流程.模型数据与实际数据的测试结果表明:在信噪比较低、地层弹性参数反差较大、层厚较薄的情况下,该反演方法的精度在很大程度上超过了基于近似反射系数的反演方法,为复杂油气藏勘探提供了新的思路.

关键词: 平均入射角, 联合反演, PS波, 反射系数, 最小二乘

Abstract: To coal reservoirs, the AVO method is not widely applied. The main reason for this phenomenon is that the offset is not large enough to provide wide incident angles for the inversion and the elastic parameters are hard-contrast at the top and bottom interface of the coal seam. Therefore, the conventional inversion method based on Aki-Richard equations is not applicable. To solve this problem, we propose a joint PP- and PS-wave inversion method based on the exact Zoeppritz equations, which can invert gathers of PP- and PS-waves with average incident angles.#br#An average incident gather consists of two incident angle traces of PP- and PS-waves. The small and large incident angle traces are derived by weighted stacking PP- or PS-wave AVA gathers in the areas with relatively smaller and larger angles, respectively. We deduce the formula about the average reflection coefficients and the four combined variables of the elastic parameters, which shows that the strata elastic parameters can be inverted by PP and PS reflection coefficient equations at two average incident angles. We use three types of strata models with fluid to compare the average and theoretical reflection coefficients. It is shown that both the PP and PS average reflection coefficients are high-precision events after weighted stacking.#br#We establish the target function for the joint inversion by the least square method. Compared to the conventional inversion method, the initial model input for the inversion does not need to be precise. We use the exact Zoeppritz equations to calculate PP and PS reflection coefficients during the forward modeling and adopt the first-order approximations during solving the model updating variations. We test the inversion method on the model consisting of a hard-contrast thin coal seam. The initial model is linear without any interface and the synthetic records are noisy, however the performance of the inversion is satisfied. We apply the inversion method to the field data. In the situation that the offset area is limited, the inversion method can invert the elastic parameters about the coal measure strata with high resolution. It is easy to identify the top and bottom interfaces of the target coal seams in the inversion results. The inversion method provides a new idea for seismic surveys in complex reservoirs.

Key words: Average incident angle, Joint inversion, PS-wave, Reflection coefficient, Least squares

中图分类号: 

  • P631
Aki K I, Richards P G. 1980. Quantitative Seismology. San Francisco: W. H. Freeman & Co.
Du Q Z, Yan H Z. 2013. PP and PS joint AVO inversion and fluid prediction. Journal of Applied Geophysics, 90: 110-118, doi: 10.1016/j. jappgeo.2013.01.005.
Fatti J L, Smith G C, Vail P J, et al. 1994. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique. Geophysics, 59(9): 1362-1376.
Hou D J, Liu Y, Hu G Q, et al. 2014. Prestack multiwave joint inversion for elastic moduli based on Bayesian theory. Chinese J. Geophys. (in Chinese), 57(4): 1251-1264, doi: 10.6038/cjg20140422.
Li H, Dou Z L, Wang S X, et al. 2014. Seismic multi-attributes recognition for carbonate fractured-vuggy reservoirs with "weak reflection" characteristics. Geophysical Prospecting for Petroleum (in Chinese), 53(6): 713-719.
Li J Y, Chen X H, Hao Z J, et al. 2005. A study on multiple time-lapse seismic AVO inversion. Chinese J. Geophys. (in Chinese), 48(4): 902-908.
Liu Q F, Liu H Q, Peng S P, et al. 2004. The roof geological features and stability of coal-bed No. 13-1 in Huainan coal-field. Journal of China Coal Society (in Chinese), 29(3): 318-322.
Liu Y, Zhang J S, Hu G M, et al. 2012. Study of three-term non-Gaussian pre-stack inversion method. Chinese J. Geophys. (in Chinese), 55(1): 269-276, doi: 10.6038/j.issn.0001-5733.图8 淮南顾桥含煤地层平均入射角PP波与PS波联合反演剖面
剖面中插入的蓝色线条为对应的测井曲线,白色横线标识了测井数据上解释的煤层顶底板.
(a) 纵波速度; (b) 横波速度; (c) 密度.
Fig.8 Joint PP- and PS-wave AVO inversion sections at average incident angles
about coal-bearing strata in Huainan Guqiao Mine
The blue curves inserted in the sections are the corresponding well logs, the white straight lines
in the blue curves marks the tops and bottoms of coal seams.
2012.01.026.
Lu J, Wang Y, Zhao W. 2010. Quantitative prediction of water content in porosity in coal measure strata using three-component seismic data. Chinese J. Geophys. (in Chinese), 53(7): 1734-1740, doi: 10.3969/j.issn.0001-5733.2010.07.025.
Lu J, Wang Y, Shi Y. 2011. Coal hardness prediction using joint inversion of multi-wave seismic data and logging. Chinese J. Geophys. (in Chinese), 54(11): 2967-2972, doi: 10.3969/j.issn.0001-5733.2011.11.027.
Qian R J. 1993. Accompanying and secondary events in seismic time section. Oil Geophysical Prospecting (in Chinese), 28(3): 282-291.
Shuey R T. 1985. A simplification of the Zoeppritz equations. Geophysics, 50(4): 609-614.
Smith G C, Gidlow P M. 1987. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 35(9): 993-1014.
Stewart R R. 1990. Joint P and P-SV inversion. CREWES Research Report 2.
Veire H H, Landrø M. 2006. Simultaneous inversion of PP and PS seismic data. Geophysics, 71(3): R1-R10.
Wang Y H. 1999. Approximations to the Zoeppritz equations and their use in AVO analysis. Geophysics, 64(6): 1920-1927.
Xu S H, Han L G, Guo J. 2012. Multiwave inversion of anisotropic parameter and PS wave AVO analysis in TTI media. Chinese J. Geophys. (in Chinese), 55(2): 569-576, doi: 10.6038/j.issn.0001-5733.2012.02.019.
Yin X Y, Cui W, Zong Z Y, et al. 2014. Petrophysical property inversion of reservoirs based on elastic impedance. Chinese J. Geophys. (in Chinese), 57(12): 4132-4140, doi: 10.6038/cjg20141224.
Zhang B J, Cheng G, Cao J Z, et al. 2002. Calculating the zero offset P and S reflection using the none-zero offset P-P and P-SV wave. Progress in Geophysics (in Chinese), 17(1): 102-106.
Zhang G Z, Du B Y, Li H S, et al. 2014. The method of joint pre-stack inversion of PP and P-SV waves in shale gas reservoirs. Chinese J. Geophys. (in Chinese), 57(12): 4141-4149, doi: 10.6038/cjg20141225.
Zhang Y G, Wang Y, Wang M Y. 2004. Some key problems in the multi-component seismic exploration. Chinese J. Geophys. (in Chinese), 47(1): 151-155.
Zhao B, Wang Y, Lu J. 2012. Recent advances of multi-component seismic and some of its key issues. Oil Geophysical Prospecting (in Chinese), 47(3): 506-516, doi: 10.13810/j.cnki.issn.000-7210.012.3.24.
Zheng X D. 1991. Approximation of Zoeppritz equation and its application. Oil Geophysical Prospecting (in Chinese), 26(2): 129-144.
Zhi L X, Chen S Q, Li X Y. 2013. Joint AVO Inversion of PP and PS waves using exact Zoeppritz equation.//83rd Annual International Meeting, SEG, Expanded Abstracts, 457-461.
侯栋甲, 刘洋, 胡国庆等. 2014. 基于贝叶斯理论的叠前多波联合反演弹性模量方法. 地球物理学报, 57(4): 1251-1264, doi: 10.6038/cjg20140422.
李弘, 窦之林, 王世星等. 2014. 碳酸盐岩缝洞型储层"弱反射"特征的地震多属性识别. 石油物探, 53(6): 713-719.
李景叶, 陈小宏, 郝振江等. 2005. 多波时移地震AVO反演研究. 地球物理学报, 48(4): 902-908.
刘钦甫, 刘衡秋, 彭苏萍等. 2004. 淮南煤田13-1煤层顶板地质特征与稳定性研究. 煤炭学报, 29(3): 318-322.
刘洋, 张家树, 胡光岷等. 2012. 叠前三参数非高斯反演方法研究. 地球物理学报, 55(1): 269-276, doi: 10.6038/j. issn.0001-5733.2012.01.026.
芦俊, 王赟, 赵伟. 2010. 应用三分量地震数据反演煤系地层孔隙含水量. 地球物理学报, 53(7): 1734-1740, doi: 10.3969/j.issn.0001-5733.2010.07.025.
芦俊, 王赟, 石瑛. 2011. 利用多波地震与测井数据联合反演预测煤岩的坚固性. 地球物理学报, 54(11): 2967-2972, doi: 10.3969/j.issn.0001-5733.2011.11.027.
钱荣钧. 1993. 地震时间剖面上的伴随相位和次生相位. 石油地球物理勘探, 28(3): 282-291.
徐善辉, 韩立国, 郭建. 2012. TTI介质各向异性参数多波反演与PS波AVO分析. 地球物理学报, 55(2): 569-576, doi: 10.6038/j.issn.0001-5733.2012.02.019.
印兴耀, 崔维, 宗兆云等. 2014. 基于弹性阻抗的储层物性参数预测方法. 地球物理学报, 57(12): 4132-4140, doi: 10.6038/cjg20141224.
张宝金, 成谷, 曹景忠等. 2002. 用非零偏P-P波、P-SV波计算零偏反射纵波和反射横波. 地球物理学进展, 17(1): 102-106.
张广智, 杜炳毅, 李海山等. 2014. 页岩气储层纵横波叠前联合反演方法. 地球物理学报, 57(12): 4141-4149, doi: 10.6038/cjg20141225.
张永刚, 王赟, 王妙月. 2004. 目前多分量地震勘探中的几个关键问题. 地球物理学报, 47(1): 151-155.
赵波, 王赟, 芦俊. 2012. 多分量地震勘探技术新进展及关键问题探讨. 石油地球物理勘探, 47(3): 506-516, doi: 10.13810/j.cnki.issn.1000-7210.2012.03.024.
郑晓东. 1991. Zoeppritz方程的近似及其应用. 石油地球物理勘探, 26(2): 129-144.
[1] 张正一;范建柯;白永良;董冬冬. 中国海-西太平洋地区典型剖面的重-磁-震联合反演研究[J]. 地球物理学报, 2018, 61(7): 2871-2891.
[2] 印兴耀;赵正阳;宗兆云. 基于层状双孔介质的地震波反射和透射系数频散特性研究[J]. 地球物理学报, 2018, 61(7): 2937-2949.
[3] 温少妍;单新建;张国宏;张迎峰;屈春燕;赵德政;李彦川. 基于InSAR和远场地震波联合反演2008年MW6.3大柴旦地震震源破裂过程[J]. 地球物理学报, 2018, 61(6): 2301-2309.
[4] 郑晨;丁志峰;宋晓东. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构[J]. 地球物理学报, 2018, 61(4): 1211-1224.
[5] 陈生昌;周华敏. 地震数据的反射波动方程最小二乘偏移[J]. 地球物理学报, 2018, 61(4): 1413-1420.
[6] 王彦飞;唐静;耿伟峰;王成祥. 带粒子滤波约束的PP-PS联合反演的稀疏解算法[J]. 地球物理学报, 2018, 61(3): 1169-1177.
[7] 殷长春;孙思源;高秀鹤;刘云鹤;陈辉. 基于局部相关性约束的三维大地电磁数据和重力数据的联合反演[J]. 地球物理学报, 2018, 61(1): 358-367.
[8] 叶秀薇;邓志辉;黄元敏;刘吉平;王小娜;刘锦;谭争光. 新丰江水库中上地壳P波三维速度结构特征及库水的渗透影响[J]. 地球物理学报, 2017, 60(9): 3432-3444.
[9] 高级;张海江;方洪健;李楠. 一种高效的基于交叉梯度结构约束的三维地震走时与直流电阻率联合反演策略[J]. 地球物理学报, 2017, 60(9): 3628-3641.
[10] 王乐洋;陈汉清. 地壳形变分析的抗差最小二乘配置迭代解法[J]. 地球物理学报, 2017, 60(8): 3062-3071.
[11] 张琼;王世民;赵永红. 基于热点参考系的板块绝对运动模型[J]. 地球物理学报, 2017, 60(8): 3072-3079.
[12] 刘刚;杨少敏;师宏波;聂兆生;熊维;王迪晋;李恒;周宇;乔学军;谭凯;王琪. 2015年尼泊尔地震破裂过程的统一模型[J]. 地球物理学报, 2017, 60(7): 2663-2679.
[13] 李红蕾;方剑;王新胜;刘杰;崔荣花;陈铭. 重力及重力梯度联合反演青藏高原及邻区岩石圈三维密度结构[J]. 地球物理学报, 2017, 60(6): 2469-2479.
[14] 宋丽蓉;于常青;郑绵平;陈文西;王永智;何俊杰;李桂花;钱鹏. 利用地球物理方法探测火山沉积型硼矿——在西藏阿里地区的应用[J]. 地球物理学报, 2017, 60(4): 1584-1594.
[15] 李洪银;屈少波;白彦峥;吴书朝;周泽兵. 静电悬浮加速度计在轨质心位置的最小二乘估计[J]. 地球物理学报, 2017, 60(3): 897-902.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!