地球物理学报 ›› 2015, Vol. 58 ›› Issue (10): 3649–3659.doi: 10.6038/cjg20151018

• 地球动力学·地震学·地热学·地磁学 • 上一篇    下一篇

华北地区水位下降是否会减缓气温上升——浅部地温影响的数值模拟分析

尹凤玲, 张怀, 石耀霖   

  1. 中国科学院计算地球动力学重点实验室, 北京 100049
  • 收稿日期:2014-02-17 修回日期:2015-09-17 出版日期:2015-10-20
  • 通讯作者: 石耀霖,E-mail:shiyl@ucas.ac.cn E-mail:shiyl@ucas.ac.cn
  • 作者简介:尹凤玲,女,1984年生,博士研究生,主要从事地球动力学研究.E-mail:yin_fengling@126.com
  • 基金资助:

    国家自然科学基金(NSFC41474067)和中国科学院,国家外国专家局创新团队国际合作伙伴计划(KZZD-EW-TZ-19)资助.

Persistent drawdown of groundwater table in North China may reduce local climate warming rate: Numerical simulation and analysis of the impacts on shallow ground temperature

YIN Feng-Ling, ZHANG Huai, SHI Yao-Lin   

  1. University of Chinese Academy of Sciences, Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-02-17 Revised:2015-09-17 Online:2015-10-20

摘要:

华北地区由于长期持续的地下水过量开采,导致了大面积地下水位大幅下降,引发地面塌陷、地下水质污染等一系列地质环境问题,这些现象早已为人们所熟知和关注.然而地下水位下降还会造成百米量级浅部地温及其梯度的变化,因此即使来自地球深部的大地热流密度没有变化,年度平均的从表浅部位通过地表实际传导进入大气的热流密度会减小,这是中外文献中尚未见讨论过的问题.我们通过数值模拟发现假定大地热流密度不变的条件下,华北数万平方公里地下水位下降会造成百米尺度内的地温降低,从而传入大气的热流密度降低40%以上,且会持续数百年以上的时间.这种长时间大范围的传导入大气的热流密度变化对环境会造成什么影响是一个十分值得关注的问题.这一预测在一定程度上得到了气象站地温观测数据的支持,但由于目前气象观测站只有3.2 m深度范围内的地温资料,累计不超过5、60年,中间还有10余年的间断,而且表浅深度地温受地表多种因素的影响也较大,这些资料难以对我们关心的地下水位下降引起流入大气的热流密度变化这一问题提供直接确凿的数据来进行分析,因此今后有必要开展对地下数十乃至数百米地温进行持续精确的监测工作.

关键词: 地下水, 浅层地温, 热流密度, 数值模拟

Abstract:

Due to long-term and persistent groundwater over-exploitation, the water table has been found significantly declined across an area of approximately 70000 km2 in North China. Consequently, a series of geo-environmental problems have emerged and drawn a large amount of public attention. These include land subsidence, groundwater contamination, etc. We found that decline of groundwater level can result in significant variation of temperature and its gradient within depths of hundreds of meters. Therefore, the annual average heat flux conducted from shallow ground to atmosphere can be reduced, even though there is no change in heat flux from the deep Earth. This effect has yet discussed neither in domestic nor in foreign studies. Our numerical simulation shows that assuming the heat flux from deep Earth is constant, the depression of the water table leads to reduction of ground temperature within depths of hundreds of meters, and therefore the reduction of heat flux transferred to atmosphere as much as 40% in groundwater drawdown zone in North China after 50 years over-exploitation. It is small the amount of reduction of heat flux transferred from surface to atmosphere. However, it can last for a long period of hundreds of years, and cover a large area of 70000 km2. Its effect on climate may not be negligible. Meteorological temperature (up to 3.2 m depth) records show similar trend. Although air temperatures are influenced by many factors, the decline of heat flux transferred to atmosphere from shallow ground should be one of the factors to be studied. We suggest that more attention be paid to this effect, and systematic monitoring of geotherm at depths of several dozen to several hundred meters should be carried out.

Key words: Groundwater, Shallow ground temperature, Heat flow density, Numerical simulation

中图分类号: 

  • P314

Abu-Hamdeh N H. 2003. Thermal properties of soils as affected by density and water content. Biosystems Engineering, 86(1): 97-102.
Al Nakshabandi G, Kohnke H. 1965. Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agricultural Meteorology, 2(4): 271-279.
Bao Y, Li Y H, Chen R S, et al. 2007. A suppositional experiment about the impact of groundwater drawdown on regional climate change in Northwest China. Arid Zone Research (in Chinese), 24(4): 434-440.
Becker B R, Misra A, Fricke B A. 1992. Development of correlations for soil thermal conductivity. International Communications in Heat and Mass Transfer, 19(1): 59-68.
Bristow K L. 1998. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agricultural and Forest Meteorology, 89(2): 75-84.
Chen W H, Liu Y X, Tang M C. 2001. A "Diqi" map method of qualitative prediction in annual precipitation with geothermal anomaly in China. Plateau Meteorology (in Chinese), 20(4): 429-434.
Deng G W, Tang M C, Guo W D. 2011. Analysis on evolution of earth-atmosphere system in China from January 2009 to April 2010. Plateau Meteorology (in Chinese), 30(5): 1274-1278.
Fu Z M, Zhou Z F, Li M W, et al. 2006. Catastrophe criterion for ground temperature based on effect of groundwater table. Journal of Jiangsu University (Natural Science Edition) (in Chinese), 27(5): 441-445.
Fu Z M, Xiang Y. 2010. Brief analysis of heat island effect of shallow groundwater depression cone and relevant concepts. Water Resources and Power (in Chinese), 28(12): 30-32.
Fu Z M, Xiang Y, Zhou Z F. 2010. Critical groundwater depth influencing the surface air temperature. Yellow River (in Chinese), 32(12): 7-9.
Gao Q, Li M, Yu M, et al. 2005. Heat transfer influenced by containing water in wet soil. Journal of Thermal Science and Technology (in Chinese), 4(2): 136-140.
He Q C, Liu W B, Li Z M. 2006. Land subsidence survey and monitoring in the North China Plain. Geological Journal of China Universities (in Chinese), 12(2): 195-209.
Hu Z Y, Xiang W G, Tang M C. 1989. Geothermal anomaly as an important factor to climate anomaly.//Comprehensive Study of Cosmic, Earth and Biosphere (in Chinese). Beijing: Science and Technology of China Press, 257-260.
Jia X L, Yang Q, Zhao Y, et al. 2011. Characteristics of soil temperature at deep layers in Urumqi in latest 50 years. Journal of Arid Meteorology (in Chinese), 29(2): 201-204.
Kuang Y Q. 2002. The effects of terrestrial heat flow on the environment of Lake Dianchi and new approach to control its pollution. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 21(2): 86-91.
Kuang Y Q, Huang N S, Zhu Z Y, et al. 2002a. Influence of the terrestrial heat flow on the evolution of the surface ecosystem and environment. Geology in China (in Chinese), 29(1): 86-95.
Kuang Y Q, Huang N S, Zhu Z Y, et al. 2002b. Terrestrial heat flow——an important Natural factor influencing evolution of ecological system and environment in the Western China. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 21(1): 30-34.
Kuang Y Q, Huang N S, Wu Z F, et al. 2003. Effects of terrestrial heat flow on the environment and ecologic evolution of Western China and its significance. Advance in Earth Sciences (in Chinese), 18(1): 22-29.
Kuang Y Q, Huang N S, Zhu Z Y, et al. 2004. Change of terrestrial heat flow in Ordos Basin since late Mesozoic and its effects on the pattern and evolution of the ecologic environment. Bulletin of Mineralogy, Petrology and Geochemistry (in Chinese), 23(4): 318-325.
Li Z M, Sun B H. 2010. Analysis and discussion of the relationship between groundwater exceeding extraction and land subsidence in Cangzhou. Ground Water (in Chinese), 32(3): 35-36.
Liu B H, Chen B J, Gong J Z, et al. 2008. Cause analysis of groundwater funnel in Langfang of Hebei province. Arid Meteorology (in Chinese), 26(2), 53-56.
Liu C M, Yu J J, Kendy E. 2001. Groundwater exploitation and its impact on the environment in the North China Plain. Water International, 26(2): 265-272.
Liu J, Cao G L, Zheng C M. 2011. Sustainability of groundwater resources in the North China Plain.//Sustaining Groundwater Resources. Netherlands: Springer, 69-87.
Liu Z P, Wang F Q, Yu F R. 2012. Variation of shallow groundwater level in Shijiazhuang Plain. South-to-North Water Transfers and Water Science & Technology (in Chinese), 10(5): 124-127.
Mao R Z, Liu X J, Lou H J. 2002. A study on the dynamic variation of shallow groundwater table in the saline and water deficit region in North China Plain. Progress in Geography (in Chinese), 21(6): 564-572.
Nobel P S, Geller G N. 1987. Temperature modelling of wet and dry desert soils. The Journal of Ecology, 75(1): 247-258.
Parikh R J, Havens J A, Scott H D. 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal, 43(5): 1050-1052.
Pollack H N, Huang S, Shen P Y. 1998. Climate change record in subsurface temperatures: a global perspective. Science, 282(5387): 279-281.
Pollack H N, Huang S P. 2000. Climate reconstruction from subsurface temperatures. Annual Review of Earth and Planetary Sciences, 28(1): 339-365.
Sass J. 1991. Climate plumbs the depths. Nature, 349(6309): 458.
Sepaskhah A R, Boersma L. 1979. Thermal conductivity of soils as a function of temperature and water content. Soil Science Society of America Journal, 43(3): 439-444.
Shimada J, Tang C, Tanaka T, et al. 2002. Irrigation caused groundwater drawdown beneath the North China Plain.//Proceedings of Int. Groundwater Conf., Darwin, Australia, 1-7.
Sun X J, Zhou G, Sun X P, et al. 2003. The study of ground temperature change after groundwater exceeding extraction. Journal of North China Institute of Water Conservancy and Hydroelectric Power (in Chinese). 24(1): 37-39.
Tang M C, Wu S J. 1981. The prediction of precipitation trend in flood season and with soil temperature at deep layers. Meteorology (in Chinese), (8): 11-12.
Tang M C, Yin J H, Cai J P. 1986. A statistical relationship between the field of soil temperature in winter and of the precipitation in spring and flood season. Plateau Meteorology (in Chinese), 5(1): 40-52.
Tang M C, Zhang J, Wang J X, et al. 1988. The similarity between the seasonal anomalous maps of soil temperature and the precipitation of the subsequent season. Acta Meteorologica Sinica (in Chinese), 46(4): 481-485.
Tang M C, Zhang J. 1994. Seasonal mean soil temperature anomaly field at depth 3. 2m and its application in prediction for flood season. Plateau Meteorology (in Chinese), 13(2): 178-187.
Turcotte D L, Schubert G. 2002. Geodynamics. 2nd ed. Cambridge: Cambridge University Press, 150-152.
Vitorello I, Pollack H N. 1980. On the variation of continental heat flow with age and the thermal evolution of continents. Journal of Geophysical Research: Solid Earth (1978—2012), 85(B2): 983-995.
Wang D C, Zhang R Q, Shi Y H, et al. 1995. Fundamentals of Hydrogeology (designed for Hydrogeological and Engineering Geology). Beijing:Geological Publishing House, 8-13.
Wang J, Yan J P, Du J W. 2009. The tendency of groundwater dynamic variation and regional response in typical area of North China Plain. Journal of Natural Science of Hunan Normal University (in Chinese), 32(4): 102-107.
Wang J Y. 1992. Inversing climate change from subsurface temperatures——a frontier topic of contemporary theoretical geothermics. Quaternary Sciences (in Chinese), (1): 36-39.
Wei B, Yimiti H, Wang Q F, et al. 2013. Correlation of burial depth of groundwater and soil water content in the Keriya Oasis, Xinjiang, China. Journal of Desert Research (in Chinese), 33(4): 1110-1116.
Wu S J, Tang M C, Zhong Q. 1982. A thermodynamic-statistical model for the long-range rainfall forecasting at the flood season in China. Plateau Meteorology (in Chinese), 1(2): 18-24.
Xu S Q, Liu F L. 2010. The present state, existing problems and prevention measures of groundwater water funnel in Handan City. Ground Water (in Chinese), 32(4): 76-77.
Xu Y Q, Mo X G, Cai Y L, et al. 2005. Analysis on groundwater table drawdown by land use and the quest for sustainable water use in the Hebei Plain in China. Agricultural Water Management, 75(1): 38-53.
Yang S Z, Zhang W R, Shen X J. 1986. Experimental conductivity of research on the thermal water-saturated porous rocks. Acta Petrologica Sinica (in Chinese), 2(4): 83-91.
Zang S X, Liu Y G, Ning J Y. 2002. Thermal structure of the lithosphere in North China. Chinese J. Geophys. (in Chinese), 45(1): 56-66.
Zektser S, Loáiciga H A, Wolf J T. 2005. Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environmental Geology, 47(3): 396-404.
Zhang X Y, Pei D, Hu C S. 2003. Conserving groundwater for irrigation in the North China Plain. Irrigation Science, 21(4): 159-166.
Zhao H Y, Xue W X, Zhu X N. 2003. The study on dryness and wetness prediction by earth-atmosphere chart in Northwest China. Arid Meteorology (in Chinese), 21(4): 37-40.
Zhou Y J, Tang M C. 1989. The basic method of forecasting yearly precipitation with soil temperature. Plateau Meteorology (in Chinese), 8(3): 228-240.

[1] 黄晞桐;宋海斌;关永贤;耿明会;王亚龙. 基于流体动力学数值模拟的海水层反射地震研究[J]. 地球物理学报, 2018, 61(7): 2892-2904.
[2] 徐世刚;刘洋. 基于优化有限差分和混合吸收边界条件的三维VTI介质声波和弹性波数值模拟[J]. 地球物理学报, 2018, 61(7): 2950-2968.
[3] 柯灝;吴敬文;李斐;王泽民;张胜凯;赵建虎. 基于潮波运动三维数值模拟的海洋连续深度基准面建立方法研究[J]. 地球物理学报, 2018, 61(6): 2220-2226.
[4] 李婉秋;王伟;章传银;杨强;冯伟;刘阳. 利用GRACE卫星重力数据监测关中地区地下水储量变化[J]. 地球物理学报, 2018, 61(6): 2237-2245.
[5] 吴建鲁;吴国忱. 频率域声-弹耦合地震波波动方程有限差分方法[J]. 地球物理学报, 2018, 61(6): 2396-2408.
[6] 皮娇龙;滕吉文;刘有山. 地震槽波的数学-物理模拟初探[J]. 地球物理学报, 2018, 61(6): 2481-2493.
[7] 师皓宇;马念杰;马骥. 龙门山断裂带形成过程及其地应力状态模拟[J]. 地球物理学报, 2018, 61(5): 1817-1823.
[8] 赵由佳;张国宏;单新建;尹昊;屈春燕. 考虑地形起伏和障碍体破裂的汶川地震强地面运动数值模拟[J]. 地球物理学报, 2018, 61(5): 1853-1862.
[9] 白帆;陈祖安;白武明. 地幔柱与岩石圈相互作用过程中熔融问题的数值模拟[J]. 地球物理学报, 2018, 61(4): 1341-1351.
[10] 董超;焦立果;张怀;程惠红;石耀霖. 外核黏性对地磁场发电机数值模型的影响[J]. 地球物理学报, 2018, 61(4): 1366-1377.
[11] 张金波;杨顶辉;贺茜君;马啸. 求解双相和黏弹性介质波传播方程的间断有限元方法及其波场模拟[J]. 地球物理学报, 2018, 61(3): 926-937.
[12] 王志伟;符力耘;张艳;魏伟. 龙马溪组页岩数字岩芯超声响应数值模拟及散射特征分析[J]. 地球物理学报, 2018, 61(3): 1069-1082.
[13] 吕浩宇;李芸;葛亚松. 磁尾中交换不稳定性所产生偶极化锋面的动力学特性研究[J]. 地球物理学报, 2018, 61(2): 403-410.
[14] 张若楠;孙丞虎;李维京. 北极海冰与夏季欧亚遥相关型年际变化的联系及对我国夏季降水的影响[J]. 地球物理学报, 2018, 61(1): 91-105.
[15] 单机坤;梁潇云;吴统文;刘向文;李巧萍. BCC_CSM1.1(m)模式对于夏季亚洲-太平洋涛动的模拟[J]. 地球物理学报, 2018, 61(1): 106-118.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!