地球物理学报 ›› 2015, Vol. 58 ›› Issue (10): 3706–3718.doi: 10.6038/cjg20151022

• 地球动力学·地震学·地热学·地磁学 • 上一篇    下一篇

毛乌素沙地风沙沉积物磁学特征及其古环境意义

赵爽1, 高福元1, 贾佳1, 李冠华1, 夏敦胜1, 靳鹤龄2   

  1. 1. 兰州大学西部环境教育部重点实验室, 兰州 730000;
    2. 中国科学院寒区旱区环境与工程研究所沙漠与沙漠化重点实验室, 兰州 730000
  • 收稿日期:2014-11-28 修回日期:2015-08-21 出版日期:2015-10-20
  • 作者简介:赵爽,男,1989年生,博士研究生,主要从事环境磁学与干旱区环境演化研究.E-mail:zhaosh13@lzu.edu.cn
  • 基金资助:

    中国科学院重点部署项目(KZZD-EW-04-04),兰州大学中央高校基本科研业务费专项资金(lzujbky-2014-270)和国家自然科学基金项目(41271215)共同资助.

Magnetic properties of eolian sand sediments in the Mu Us Desert and their paleoenvironmental significance

ZHAO Shuang1, GAO Fu-Yuan1, JIA Jia1, LI Guan-Hua1, XIA Dun-Sheng1, JIN He-Ling2   

  1. 1. Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China;
    2. Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2014-11-28 Revised:2015-08-21 Online:2015-10-20

摘要:

在沙漠沉积环境中,成土作用对磁化率的贡献较小,往往被原生磁信号掩盖,因此分离两种磁组分对气候和粉尘代用指标的提取至关重要. 本研究选取位于毛乌素沙地东缘的锦界风沙沉积剖面为研究对象,利用多变量一元线性回归中的"平均值概念"进行磁化率的原生碎屑组分X0和次生成土组分Xpedo的分离,并探讨磁学参数所承载的气候和环境意义. 结果显示,磁学比值参数(如Xpedo/X0Xfd/HIRM、Xfd%和XARM/SIRM)彼此之间存在显著线性或指数/对数相关关系,它们对成土强度指示明确,可以在一定程度上减小或避免磁性矿物背景值差异所产生的误差,与磁化率相比更适宜用于该区的古降水量重建. HIRM主要由碎屑赤铁矿含量控制,HIRM与X0存在明显正相关关系,表明碎屑赤铁矿随原生磁性矿物总体含量的增加(减少)而增加(减少),在粉尘成因磁性矿物中所占比例大致稳定,从而HIRM可以指示源区粉尘通量的变化. 锦界剖面的原生和次生磁性矿物浓度均明显低于黄土高原黄土,不同地层X0Xpedo在磁化率中所占的比例存在较大差异,因此磁化率的环境意义比较复杂,在使用其恢复古气候古环境时需慎重.

关键词: X0Xpedo, 降水量, 粉尘通量, 环境磁学, 毛乌素沙地

Abstract:

In arid deserts, magnetic susceptibility enhancement caused by pedogenesis is limited and usually disturbed by lithogenic magnetic signals. Separation of these two magnetic components is essential for selecting the precise proxy for climate and dust variation. This paper presents detailed magnetic investigation of eolian sand sediments from the Jinjie section at the east edge of Mu Us Desert to explore the relationship between the magnetic parameters and sedimentary environment.
Hysteresis loops and temperature dependence of magnetization (J-T curves) were measured to identify the types of magnetic minerals. Environmental magnetic measurements, such as low-frequency magnetic susceptibility (Xlf), frequency-dependent magnetic susceptibility (Xfd), susceptibility of anhysteretic remanent magnetization (XARM), saturation isothermal remanent magnetization (SIRM) and "hard" isothermal remanent magnetization (HIRM) were carried out to determine the content of magnetic minerals in different types and domains. Magnetic ratio parameters, including percentage of frequency-dependent magnetic susceptibility (Xfd%), XARM/SIRM and XARM/Xlf, were calculated to estimate the grain-size of magnetic minerals. The "mean value concept" in a mono-linear regression of multi-variables was used to separate lithogenic and pedogenic magnetic susceptibility components (X0 and Xpedo).
The results show that magnetic minerals of the Jinjie section are dominated by ferromagnetic minerals with a few antiferromagnetic minerals mixed. Magnetic grain-size is quite fine compared with the adjacent loess deposits, mainly coarse stable single domain (SSD) and superparamagnetic (SP) particles. The equivalent magnetic grain-size is 0.1~1 μm with more fine/ultrafine particles appearing in paleosol layers. Both lithogenic and pedogenic magnetic mineral contents of the Jinjie section are less than eolian depositions on the Chinese Loess Plateau. Xlf values range (5.21~38.50)×10-8m3·kg-1, with the average X0 value 7.663×10-8m3·kg-1. The proportion of X0 and Xpedo occupied in the mass magnetic susceptibility is widely fluctuant in the section, thus paleoenvironmental significance of magnetic susceptibility is complicated, and great attention should be paid when magnetic susceptibility is used as a paleoprecipitation indicator.
The ratios of magnetic parameters, i.e. Xpedo/X0, Xfd/HIRM,Xfd% and XARM/SIRM, possess significant linear or logarithmic/exponential correlation between each other. All these ratios can reduce or refrain the effect from lithogenic magnetic signals, and thus can accurately indicate pedogenesis intensity and precipitation. We consider that HIRM mainly reflects detrital hematite content, which is derived from the dust source region. The prominent positive correlation between HIRM and X0 indicates that detrital hematite possesses a roughly constant proportion in the mass eolian magnetic minerals, thus HIRM can be used as a proxy for dust flux in the Mu Us Desert.

Key words: X0 and Xpedo, Precipitation, Dust flux, Environmental magnetism, Mu Us Desert

中图分类号: 

  • P318

An Z S, Kukla G J, Porter S C, et al. 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130000 years. Quat. Res., 36(1): 29-36.
Balsam W, Ji J F, Chen J. 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth Planet. Sci. Lett., 223(3-4): 335-348.
Barrón V, Torrent J. 2002. Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochim. Cosmochim. Acta, 66(15): 2801-2806.
Beer J, Shen C D, Heller F, et al. 1993. 10Be and magnetic susceptibility in Chinese loess. Geophys. Res. Lett., 20(1): 57-60.
Carvallo C, Muxworthy A R, Dunlop D J. 2006. First-order reversal curve (FORC) diagrams of magnetic mixtures: Micromagnetic models and measurements. Phys. Earth Planet. Inter., 154(3-4): 308-322.
Dearing J A, Bird P M, Dann R J L, et al. 1997. Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophys. J. Int., 130(3): 727-736.
France D E, Oldfield F. 2000. Identifying goethite and hematite from rock magnetic measurements of soils and sediments. J. Geophys. Res., 105(B2): 2781-2795.
Geiss C E, Egli R, Zanner C W. 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. J.Geophys.Res.,113: B11102, doi: 10.1029/2008JB005669.
Han J M, Lü H Y, Wu N Q, et al. 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction. Stud. Geophys. Geod., 40(3): 262-275.
Heller F, Shen C D, Beer J, et al. 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications. Earth Planet. Sci. Lett., 114(2-3): 385-390.
Heslop D, Dillon M. 2007. Unmixing magnetic remanence curves without a priori knowledge. Geophys. J. Int., 170(2): 556-566.
Hu P X, Liu Q S, Torrent J, et al. 2013. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth Planet. Sci. Lett., 369-370: 271-283.
Ji J F, Chen J, Balsam W, et al. 2004. High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: Rapid climatic response of the East Asian Monsoon to the tropical Pacific. Geophys. Res. Lett., 31(3): L03207, doi: 10.1029/2003GL018975.
King J, Banerjee S K, Marvin J, et al. 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet. Sci. Lett., 59(2): 404-419.
Li P Y, Liu X M, Guo X L, et al. 2013. The magnetic susceptibility properties of top soil's in Gobi-Loess Plateau, Northwest China. Quat. Sci. (in Chinese), 33(2): 360-367.
Liu B, Jin H L, Sun L Y, et al. 2014. Holocene moisture change revealed by the Rb/Sr ratio of aeolian deposits in the southeastern Mu Us Desert, China. Aeolian Res., 13: 109-119.
Liu Q S, Banerjee S K, Jackson M J, et al. 2003. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance. J. Geophys. Res., 108(B9): 2437, doi: 10.1029/2002JB002264.
Liu Q S, Banerjee S K, Jackson M J, et al. 2004a. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. J. Geophys. Res., 109: B03101, doi: 10.1029/2003JB002747.
Liu Q S, Jackson M J, Yu Y, et al. 2004b. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophys. Res. Lett., 31: L22603, doi: 10.1029/2004GL021090.
Liu Q S, Deng C L, Yu Y, et al. 2005a. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int., 161(1): 102-112.
Liu Q S, Torrent J, Maher B A, et al. 2005b. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. J. Geophys. Res., 110: B11102, doi: 10.1029/2005JB003726.
Liu Q S, Deng C L, Torrent J, et al. 2007a. Review of recent developments in mineral magnetism of the Chinese loess. Quat. Sci. Rev., 26(3-4): 368-385.
Liu Q S, Roberts A P, Torrent J, et al. 2007b. What do the HIRM and S-ratio really measure in environmental magnetism? Geochem. Geophy. Geosy., 8(9): Q09011, doi: 10.1029/2007GC001717.
Liu Q S, Barrón V, Torrent J, et al. 2008. Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications. J. Geophys. Res., 113: B01103, doi: 10.1029/2007JB005207.
Liu Q S, Roberts A P, Larrasoaña J C, et al. 2012. Environmental magnetism: Principles and applications. Rev. Geophys., 50(4): RG4002, doi: 10.1029/2012RG000393.
Liu X M, Bloemendal J, Rolph T. 1994. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences: comments and reply. Geology, 22(9): 857-860.
Liu Z F, Liu Q S, Torrent J, et al. 2013. Testing the magnetic proxy FD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China. Global Planet. Change, 110: 368-378.
Lü B, Liu X M, Chen Q, et al. 2012. Effects of CBD treatment on magnetic minerals of natural samples. Chinese J. Geophys. (in Chinese), 55(9): 3077-3087, doi: 10.6038/j.issn.0001-5733.2012.09.025.
Lu H Y, Yi S W, Liu Z Y, et al. 2013. Variation of East Asian monsoon precipitation during the past 21 k. y. and potential CO2 forcing. Geology, 41(9): 1023-1026.
Maher B A, Karloukovski V V, Mutch T J. 2004. High-field remanence properties of synthetic and natural submicrometre haematites and goethites: significance for environmental contexts. Earth Planet. Sci. Lett., 226(3-4): 491-505.
Muxworthy A R, Williams W, Virdee D. 2003. Effect of magnetostatic interactions on the hysteresis parameters of single-domain and pseudo-single-domain grains. J. Geophys. Res., 108(B11): 2517, doi: 10.1029/2003JB002588.
Nie J S, Song Y G, King J W, et al. 2010. HIRM variations in the Chinese red-clay sequence: Insights into pedogenesis in the dust source area. J. Asian Earth Sci., 38(3-4): 96-104.
Nie J S, Song Y G, King J W, et al. 2013. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during ~4.5-2.6 Ma. Quat. Res., 79(3): 465-470.
Nie J S, Stevens T, Song Y G, et al. 2014. Pacific freshening drives Pliocene cooling and Asian monsoon intensification. Sci. Rep., 4: 5457, doi: 10.1038/srep05474.
Peters C, Dekkers M J. 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth, 28(16-19): 659-667.
Roberts A P, Rohling E J, Grant K M, et al. 2011. Atmospheric dust variability from Arabia and China over the last 500, 000 years. Quat. Sci. Rev., 30(25-26): 3537-3541.
Song Y, Hao Q Z, Ge J Y, et al. 2012. Quantitative relationships between modern soil magnetic susceptibility and climatic variables of the Chinese Loess Plateau. Quat. Sci. (in Chinese), 32(4): 679-689.
Stevens T, Carter A, Watson T P, et al. 2013. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quat. Sci. Rev., 78: 355-368.
Sun J M. 2000. Origin of eolian sand mobilization during the past 2300 years in the Mu Us desert, China. Quat. Res., 53(1): 78-88.
Sun J M. 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet. Sci. Lett., 203(3-4): 845-859.
Thompson R, Oldfield F. 1986. Environmental Magnetism. London: Allen & Unwin, 1-227.
Torrent J, Barrón V, Liu Q S. 2006. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophys. Res. Lett., 33(2): L02401, doi: 10.1029/2005GL024818.
Verosub K L, Fine P, Singer M J, et al. 1993. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21(11): 1011-1014.
Wang T, et al. 2011. Deserts and Aeolian Desertification in China. Beijing: Science Press, 476-492.
Worm H U. 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int., 133(1): 201-206.
Wu S Y. 2013. Climatic characteristic and variation analyses of Shenmu County over the past 55 years. J. Shaanxi Meteor. (in Chinese), (2): 20-23.
Xia D S, Jia J, Wei H T, et al. 2012. Magnetic properties of surface soils in the Chinese Loess Plateau and the adjacent Gobi areas, and their implication for climatic studies. J. Arid Environ., 78: 73-79.
Xia D S, Jia J, Li G H, et al. 2014. Out-of-phase evolution between summer and winter East Asian monsoons during the Holocene as recorded by Chinese loess deposits. Quat. Res., 81(3): 500-507.
Xu Z W, Lu H Y, Yi S W, et al. 2013. Spatial variations of the Mu Us dune field (north central China) during the Last Glacial Maximum and Holocene Optimum. Quat. Sci. (in Chinese), 33(2): 218-227.
Zhao S, Xia D S, Jin H L, et al. 2013. Magnetic characteristics of aeolian sand sediments in Horqin sandy land, Northeastern China, and its paleoenvironmental significance: A preliminary exploration. J. Desert Res. (in Chinese), 33(2): 334-342.
Zhou W J, Chen M B, Xian F, et al. 2007. The mean value concept in mono-linear regression of multi-variables and its application to trace studies in geosciences. Sci. China Ser. D: Earth Sci., 50(12): 1828-1834.

[1] 曹丽婉;胡守云;Appel Erwin;师尚礼;尹刚. 临汾市树叶磁性的时空变化特征及其对大气重金属污染的指示[J]. 地球物理学报, 2016, 59(5): 1729-1742.
[2] 张鹏;敖红;安芷生;王千锁. 兰州盆地渐新世沉积物岩石磁学性质探究[J]. 地球物理学报, 2015, 58(7): 2445-2459.
[3] 王涛;郭晖;刘秀铭;吕镔;毛学刚;周子博;温昌辉;侯顺民;苏龙剑. 澳大利亚悉尼Long Reef Beach中新世古土壤岩石磁学特征及环境意义[J]. 地球物理学报, 2015, 58(3): 971-981.
[4] 王博;夏敦胜;余晔;贾佳;许淑婧. 典型沙漠绿洲城市表土磁性特征及环境指示意义[J]. 地球物理学报, 2014, 57(3): 891-905.
[5] 陈艇;王张华;强小科;马春燕;战庆. 太湖平原WJ孔矿物磁学特征以及晚第四纪海侵事件[J]. 地球物理学报, 2013, 56(8): 2748-2759.
[6] 魏海涛;Subir K. Banerjee;夏敦胜;Michael J. Jackson;贾佳;陈发虎. 天山北麓黄土环境磁学特征及其古气候意义[J]. 地球物理学报, 2013, 56(1): 150-158.
[7] 苏志华;杨小强;阳杰;郑卓;乐远福;王建华. 福州盆地全新世沉积物的磁学性质及其对环境变化的响应[J]. 地球物理学报, 2012, 55(11): 3718-3730.
[8] 吕镔;刘秀铭;陈渠;赵国永;陈家胜;毛学刚;郭雪莲. CBD方法对天然样品磁性矿物影响[J]. 地球物理学报, 2012, 55(09): 3077-3087.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!