地球物理学报 ›› 2014, Vol. 57 ›› Issue (5): 1366–1376.doi: 10.6038/cjg20140502

• 空间物理学★大气物理学★大地测量学 • 上一篇    下一篇

利用GRACE卫星精密微波测距确定星间平均电子密度

熊超1,2, 马淑英2, 尹凡2   

  1. 1. 宇航动力学国家重点实验室, 西安 710043;
    2. 武汉大学电子信息学院, 武汉 430072
  • 收稿日期:2013-10-29 修回日期:2014-03-18 出版日期:2014-05-20
  • 作者简介:熊超,男,1983年生,汉族,湖北襄樊人,2012年在武汉大学获得博士学位,现为德国地学研究中心博士后,研究方向为电离层环境与探测.
  • 基金资助:
    国家海洋公益性行业科研专项(201005017)和宇航动力学国家重点实验室开放基金(2012ADL-DW0302)资助.熊超获国家留学基金委CSC和德国DAAD三明治联合培养博士生奖学金资助.

Determination of mean electron density between GRACE A and B satellites with precise microwave ranging

XIONG Chao1,2, MA Shu-Ying2, YIN Fan2   

  1. 1. State Key Laboratory of Astronautic Dynamics, Xi'an 710043, China;
    2. College of Electronic Information, Wuhan University, Wuhan 430072, China
  • Received:2013-10-29 Revised:2014-03-18 Online:2014-05-20
  • Contact: 马淑英,E-mail:syma@whu.edu.cn E-mail:syma@whu.edu.cn

摘要: 本文介绍如何利用GRACE两颗卫星之间K波段双频微波精密测距和轨道数据,得到星间平均电子密度.发展了一种将连续轨道电子密度极小对齐到零的方法,以消除整周模糊度;借助CHAMP卫星朗缪探针测量得到的轨道电子密度基值以及GPS掩星数据计算的等离子体垂直梯度标高,进一步修正了GRACE星间电子密度所固有的偏差;从而得到大约500 km高度上长达近十年的全球电子密度数据.为了检验消除偏差后GRACE星间电子密度数据的可靠性,对比了GRACE卫星过Millstone Hill雷达上空时,非相干散射雷达观测到的大致同时和相近位置的电子密度数据,结果显示,二者之间的线性相关系数为0.97,平均偏差为-7.26%,GRACE星间电子密度总体稍微偏低,偏差的标准差为18.6%.为进一步验证本文方法所得数据的可用价值,利用消除偏差后的电子密度数据,对GRACE卫星与CHAMP卫星在近乎相同的地方时而高度不同的近圆极轨道上飞行的情况下,两颗卫星观测到的电子密度随经度和纬度的全球分布进行了对比分析.多方面的对比检验证明,本文方法得到的几乎连续10年的GRACE高度上全球电子密度数据基本可靠,为电离层气候学与天气学研究提供了宝贵资料.

关键词: 精密微波测距, 电子总含量, 整周模糊度, 电离层电子密度, 垂直梯度标高

Abstract: This paper presents how to get mean electron density, Ne, between two satellites of GRACE A and B from precise microwave ranging at K band. A new method is developed to remove the integer cycle ambiguity, in which the orbital minimum electron densities for every continue data segments are moved to zero. With the help of CHAMP orbital base Ne measured by Langmuir Probe along with the plasma vertical scale height derived from CHAMP/GPS occultation, the inherent biases in the mean electron density between two GRACE satellites are corrected. Thus a large data set of global electron density almost continuous for ten years is established. To examine the reliability of the data, a comparison is made between the satellite GRACE Ne and the Millstone Hill radar measured Ne when the two satellites passing over the radar. It shows that the linear correlation coefficient between the two groups of Ne is as high as 0.97, the mean error deviation is -7.26% and the standard deviation 18.6%. To validate further the usage value of the data, a comparative analysis is made on the global distributions versus longitude and latitude of the electron densities observed from GRACE and CHAMP when they orbit the Earth in nearly the same local time but at different altitudes. All the comparative tests direct to the point that the global electron density database established from GRACE by using the newly developed method is generally reliable, providing valuable data for space weather and space climate research.

Key words: Precise microwave ranging, Total electron content, Integer cycle ambiguity, Ionospheric electron density, Plasma vertical scale height

中图分类号: 

  • P352
Case K, Kruizinga G, Wu S. 2002. GRACE Level 1B Data Product User Handbook. JPL Publication D-22027.
Hargreaves J K. 1995. The Solar-Terrestrial Environment. Cambridge: Cambridge University Press.
Kim J. 2000. Simulation study of a low-low satellite-to-satellite tracking mission. Texas: Univ. of Texas at Austin.
Leitinger R. 1996. Tomography.// Kohl H, Ruester R, Schelegel K. Modern Ionospheric Science. ISBN3-9804862-1-4, Germany.
Liu L, Le H J, Wan W X, et al. 2007. An analysis of the scale heights in the lower topside ionosphere based on the Arecibo incoherent scatter radar measurements. J. Geophys. Res., 112(A6): A06307, doi: 10.1029/2007JA012250.
Stankov S M, Jakowski N. 2006a. Topside plasma scale height retrieved from radio occultation measurements. Adv. Space Res., 37(5): 958-962.
Stankov S M, Jakowski N. 2006b. Topside ionospheric scale height analysis and modelling based on radio occultation measurements. J. Atmos. Solar-Terr. Phys., 68(2): 134-162.
Tapley B D, Bettadpur S, Watkins M, et al. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31(9): L09607, doi: 10.1029/2004GL019920.
Thomas J B. 1999. An Analysis of Gravity-Field Estimation Based on Inter-satellite Dual-1-Way Biased Ranging. JPL Publication, 98-15.
Xiong C, Lühr H. 2013. Nonmigrating tidal signatures in the magnitude and the inter-hemispheric asymmetry of the equatorial ionization anomaly. Ann. Geophys., 31(6): 1115-1130, doi:10.5194/angeo-31-1115-2013.
Xiong C, Lühr H, Ma S Y. 2013a. The magnitude and inter-hemispheric asymmetry of equatorial ionization anomaly-based on CHAMP and GRACE observations. J. Atmos. Solar-Terr. Phys., 105-106:160-169, doi: 10.1016/j.jastp.2013.09.010.
Xiong C, Lühr H, Ma S Y. 2013b. The subauroral electron density trough: Comparison between satellite observations and IRI-2007 model estimates. Adv. Space Res., 51(4): 536-544, doi: 10.1016/j.asr.2011.09.021.
[1] 张宝成;ODIJK Dennis. 一种能实现单频PPP-RTK的GNSS局域参考网数据处理算法[J]. 地球物理学报, 2015, 58(7): 2306-2319.
[2] 江芳;毛田;李小银;付利平;王咏梅;余涛. 利用OI 135.6 nm夜气辉辐射探测电离层峰值电子密度及电子总含量的研究[J]. 地球物理学报, 2014, 57(11): 3679-3687.
[3] 姜卫平;邹璇;唐卫明. 基于CORS网络的单频GPS实时精密单点定位新方法[J]. 地球物理学报, 2012, (5): 1549-1556.
[4] 翁利斌;方涵先;张阳;杨升高;汪四成. Athens地区电离层TEC、NmF2以及板厚[J]. 地球物理学报, 2012, 55(11): 3558-3567.
[5] 张宝成;Teunissen J G Peter;Odijk Dennis;欧吉坤;蒋振伟. 精密单点定位整周模糊度快速固定[J]. 地球物理学报, 2012, 55(07): 2203-2211.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!