地球物理学报 ›› 2013, Vol. 56 ›› Issue (6): 1809–1824.doi: 10.6038/cjg20130603

• 空间物理学★大气物理学★大地测量学 • 上一篇    下一篇

利用CloudSat卫星资料分析热带气旋的结构特征

严卫1, 韩丁1, 周小珂1, 刘会发1, 唐超2   

  1. 1. 解放军理工大学气象海洋学院, 南京 211101;
    2. 解放军92313部队气象台, 辽宁 兴城 125106
  • 收稿日期:2012-05-16 修回日期:2013-03-25 出版日期:2013-06-20
  • 通讯作者: 韩丁,男,1986年生,博士研究生,主要从事云物理参数的反演与应用研究.E-mail:handing_ok@126.com E-mail:handing_ok@126.com
  • 作者简介:严卫,男,1961年生,教授,博士生导师,主要从事大气和海洋环境遥感等方面的工作.E-mail:weiyan2002net@yahoo.com
  • 基金资助:

    国家自然科学基金项目(41076118)和国家自然科学基金青年基金项目(41005018)共同资助.

Analysing the structure characteristics of tropical cyclones based on CloudSat satellite data

YAN Wei1, HAN Ding1, ZHOU Xiao-Ke1, LIU Hui-Fa1, TANG Chao2   

  1. 1. Institute of Meteorology and Oceanography, PLA University of Science & Technology, Nanjing 211101, China;
    2. Meteorology Station of Unit No.92313 of PLA, Liaoning Xingcheng 125106, China
  • Received:2012-05-16 Revised:2013-03-25 Online:2013-06-20

摘要:

利用2006—2010年的CloudSat热带气旋过境数据集资料,定量分析了大西洋地区飓风的云、降水和热力结构在不同演变阶段内的分布特征,结果表明:雷达反射率的发生概率以5 km高度为"拐点"呈现不同的分布特点,且成熟阶段的回波强度明显大于发展和消亡阶段.各径向环内深对流云发生概率始终最大,积云和雨层云始终最小.冰水含量的最大值位于内核区且沿径向不断减小,有效粒子半径和分布宽度参数随高度减小而粒子数浓度却增大.温度距平在距离中心200 km以内随飓风演变不断增大,而200 km以外始终较小.各阶段8 km以下存在湿心区,而其上方正好对应暖心区.内核区发展阶段存在近饱和区而成熟和消亡阶段存在向外倾斜的未饱和区.各阶段不同径向环内4 km以上主要为稳定层结而4 km以下的层结特性各异,且假相当位温沿径向逐渐减小.

关键词: CloudSat, 大西洋, 飓风, 云发生概率, 热力结构

Abstract:

Using tropical cyclone crossing dataset of CloudSat from 2006 to 2010, the distribution characteristics of cloud, precipitation and thermal structure of hurricanes at different evolutionary stages in Atlantic are quantitatively analyzed, the results show that occurrence probability of radar reflectivity has different changing characteristics when considering 5 km height as a "turning point", and the echo intensity at mature stage is significantly greater than that at developing or decaying stage. Occurrence probability of deep convective cloud is always largest and those of cumulus and nimbostratus are always smallest in each radial ring. The maximum of ice water content occurs in inner-core area and it decreases along radial direction, and effective radius and distribution width parameter decrease as height increasing while particle number concentration increases. The temperature anomaly increases as development of hurricane within 200 km of center but it's always small outside 200 km. Below 8 km altitude, a wet core area exists at each stage and above it there is a hot core area. In inner-core area, a nearly saturated area appears at developing stage while at mature or decaying stage there is an unsaturated area tilted outwardly. Atmosphere stratification is mainly stable above 4 km altitude in each radial ring at different stages but below that it varies between stages, and pseudo-equivalent potential temperature decreases along radial direction.

Key words: CloudSat, Atlantic, Hurricane, Cloud occurrence probability, Thermal structure

中图分类号: 

  • P426
[1]薛根元, 王志福, 周丽峰等. 登陆东南沿海热带气旋的异常特征及其成因研究. 地球物理学报, 2007, 50(5): 1362-1372. Xue G Y, Wang Z F, Zhou L F, et al. On abnormal features and formation causes of tropical cyclones landing southeastern coastal zones of China. Chinese J. Geophys. (in Chinese), 2007, 50(5): 1362-1372.
[2]Rodgers E B, Chang S W, Pierce H F. A satellite observational and numerical study of precipitation characteristics in Western North Atlantic tropical cyclones. J. Appl. Meteor., 1994, 33(2): 129-139.
[3]Rodgers E B, Pierce H F. A satellite observational study of precipitation characteristics in Western North Pacific tropical cyclones. J. Appl. Meteor., 1995, 34(12): 2587-2599.
[4]Rodgers E B, Adler R F, Pierce H F. Contribution of tropical cyclones to the North Pacific climatological rainfall as observed from satellites. J. Appl. Meteor., 2000, 39(10): 1658-1678.
[5]Rodgers E B, Adler R F, Pierce H F. Contribution of tropical cyclones to the North Atlantic climatological rainfall as observed from satellites. J. Appl. Meteor., 2001, 40(11): 1785-1800.
[6]Kovacs T A, McCormick M P. Observations of typhoon Melissa during the lidar in-space technology experiment (LITE). J. Appl. Meteor., 2003, 42(7): 1003-1013.
[7]Yokoyama C, Takayabu Y N. A statistical study on rain characteristics of tropical cyclones using TRMM satellite data. Mon. Wea. Rev., 2008, 136(10): 3848-3862.
[8]Kidder S Q, Goldberg M D, Zehr R M, et al. Tropical cyclone analysis using AMSU data.//Proceedings of 10th Conference on Satellite Meteorology and Oceanography, Long Beach, California. Boston, America: American Meteorological Society, 2000: 185-188.
[9]Kidder S Q, Goldberg M D, Zehr R M, et al. Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 2000, 81(6): 1241-1259.
[10]刘喆, 李万彪, 韩志刚等. 利用AMSU-A亮温估测西北太平洋区域热带气旋强度. 地球物理学报, 2008, 51(1): 51-57. Liu Z, Li W B, Han Z G, et al. Estimating the intensity of tropical cyclone in Western North Pacific basin with AMSU-A brightness temperature. Chinese J. Geophys. (in Chinese), 2008, 51(1): 51-57.
[11]Pineros M F, Ritchie E A, Tyo J S. Objective measures of tropical cyclone structure and intensity change from remotely sensed infrared image data. IEEE Trans. Geosci. Remote Sens., 2008, 46(11): 3574-3580.
[12]丁金才, 郭英华, 郭永润等. 利用COSMIC资料对17个台风热力结构的合成分析. 热带气象学报, 2011, 27(1): 31-43. Ding J C, Guo Y H, Guo Y R, et al. The composite analysis of the thermal structure of 17 typhoons by using COSMIC data. J. Trop. Meteor. (in Chinese), 2011, 27(1): 31-43.
[13]Luo Z Z, Stephens G L, Emanuel K A, et al. On the use of CloudSat and MODIS data for estimating hurricane intensity. IEEE Geosci. Remote Sens. Lett., 2008, 5(1): 13-16.
[14]Mitrescu C, Miller S, Hawkins J. Near-real-time applications of CloudSat data. J. Appl. Meteor. Climatol., 2008, 47(7): 1982-1994.
[15]Durden S L, Tanelli S, Dobrowalski G. CloudSat and A-Train observations of tropical cyclones. Open Atmos. Sci. J., 2009, 3(1): 80-92.
[16]Matrosov S Y. CloudSat measurements of landfalling hurricanes Gustav and Ike (2008). J. Geophys. Res., 2011, 116(D1): D01203, doi: 10.1029/2010JD014506.
[17]赵姝慧. 利用TRMM卫星和CloudSat卫星对不同类型云系的中微尺度结构的研究分析[硕士论文]. 南京: 南京信息工程大学, 2008: 66-72. Zhao S H. A study on the mesoscale and microscale structure in different types of clouds by TRMM satellite and CloudSat satellite [Master's thesis](in Chinese). Nanjing: Nanjing University of Information Science & Technology, 2008: 66-72.
[18]朱乾根, 林景瑞, 寿少文等. 天气学原理和方法. 第4版. 北京: 气象出版社, 2007: 508-555. Zhu Q G, Lin J R, Shou S W, et al. Weather Principles and Methods (in Chinese). 4th Ed. Beijing: China Meteorological Press, 2007: 508-555.
[19]Cecil D J, Zipser E J, Nesbitt S W. Reflectivity, ice scattering, and lighting characteristics of hurricane eyewalls and rainbands. Part I: quantitative description. Mon. Wea. Rev., 2002, 130(4): 769-784.
[20]Black M L, Burpee R W, Marks F D Jr. Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 1996, 53(13): 1887-1909.
[21]Black R A, Hallett J. Electrification of the hurricane. J. Atmos. Sci., 1999, 56(12): 2004-2028.
[22]Austin R T, Heymsfield A J, Stephens G L. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 2009, 114(D8): D00A23, doi: 10.1029/2008JD010049.
[23]Zehr R M. Satellite diagnostics of tropical cyclones.//Proceedings of 3rd Conference on Satellite Meteorology and Oceanography, Anaheim, California. Boston, America: American Meteorological Society, 1988: 241-246.
[24]Emanuel K A. The maximum intensity of hurricanes. J. Atmos. Sci., 1986, 45(7): 1143-1155.
[25]Merrill R T. Environmental influences on hurricane intensification. J. Atmos. Sci., 1988, 45(11): 1678-1687.
[26]Evans J L. Sensitivity of tropical cyclone intensity to sea surface temperature. J. Climate, 1993, 6(6): 1133-1140.
[27]Demaria M, Kaplan J. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basis. Wea. Forecasting, 1994, 9(2): 209-220.
[28]王瑾, 江吉喜. AMSU资料揭示的不同强度热带气旋热力结构特征. 应用气象学报, 2005, 16(2): 159-166. Wang J, Jiang J X. The thermal structure characteristics of tropical cyclones with different intensity revealed by AMSU data. J. Appl. Meteor. Sci. (in Chinese), 2005, 16(2): 159-166.
[29]刘学刚. 台风暖心结构与强度变化的统计联系. 南京: 南京信息工程大学, 2007: 11-95. Liu X G. Statistical relationship between typhoon's warm center structure and intensity change (in Chinese). Nanjing: Nanjing University of Information Science & Technology, 2007: 11-95.
[30]彭犁然, 舒守娟. 利用GPS Dropsonde资料研究"龙王"台风的结构特征. 热带气象学报, 2010, 26(1): 13-21. Peng L R, Shu S J. Analysis on structure of typhoon Longwang based on GPS Dropsonde data. J. Trop. Meteor. (in Chinese), 2010, 26(1): 13-21.
[31]陈瑞闪. 台风. 福州: 福建科学技术出版社, 2002: 379-391. Chen R S. Typhoons (in Chinese). Fuzhou: Fujian Science and Technology Press, 2002: 379-391.
[32]严卫, 韩丁, 陆文等. 基于COSMIC掩星探测资料的云底高反演研究. 地球物理学报, 2012, 55(1): 1-15, Yan W, Han D, Lu W, et al. Research of cloud-base height retrieval based on COSMIC occultation sounding data. Chinese J. Geophys. (in Chinese), 2012, 55(1): 1-15, doi: 10.6038/j.issn.0001-5733.2012.01.001.
[33]盛裴轩, 毛节泰, 李建国等. 大气物理学. 北京: 北京大学出版社, 2003: 162-165. Sheng P X, Mao J T, Li J G, et al. Atmospheric Physics (in Chinese). Beijing: Peking University Press, 2003: 162-165.
[1] 陈洋;邹鸿;陈鸿飞;于向前;施伟红. 暴时内辐射带高能质子的损失和恢复机制探究[J]. 地球物理学报, 2016, 59(7): 2344-2355.
[2] 韩哲;李双林;李琛;孙捷. 2008年和2012年冬季欧洲气候的差异及成因[J]. 地球物理学报, 2014, 57(3): 727-737.
[3] 钱维宏;梁浩原. 北半球大气遥相关型与区域尺度大气扰动[J]. 地球物理学报, 2012, (5): 1449-1461.
[4] 左金清;李维京;任宏利;陈丽娟. 春季北大西洋涛动与东亚夏季风年际关系的转变及其可能成因分析[J]. 地球物理学报, 2012, 55(2): 384-395.
[5] 严卫;韩丁;赵现斌;周小珂. 基于毫米波雷达、无线电掩星和探空仪资料的云边界高度对比研究[J]. 地球物理学报, 2012, 55(07): 2212-2226.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!