地球物理学报 ›› 2013, Vol. 56 ›› Issue (6): 1825–1834.doi: 10.6038/cjg20130604

• 空间物理学★大气物理学★大地测量学 • 上一篇    下一篇

南半球平流层极涡崩溃早晚年环流异常特征

李琳1, 潘静2, 李崇银1,2   

  1. 1. 解放军理工大学气象学院, 南京 211101;
    2. 中国科学院大气物理研究所LASG, 北京 100029
  • 收稿日期:2012-09-26 修回日期:2013-05-16 出版日期:2013-06-20
  • 作者简介:李琳,男,1983年生,工程师,目前主要从事平流层气候方面的研究. E-mail: llen1983@163.com
  • 基金资助:

    国家重点基础研究发展计划(973计划)(2010CB950401,2012CB957803)资助.

On the character of early and late breakup of Southern Hemisphere Stratospheric polar vortex

LI Lin1, PAN Jing2, LI Chong-Yin1,2   

  1. 1. Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101, China;
    2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2012-09-26 Revised:2013-05-16 Online:2013-06-20

摘要:

极涡崩溃是平流层大气环流一个重要的变化过程,本文利用31年的再分析资料研究了南半球平流层极涡崩溃早晚年的异常特征.研究结果表明,南半球平流层极涡崩溃偏早年极涡崩溃前后平流层环流场异常表现为整层一致的变化,即都为正温度异常、正位势高度异常和负纬向风异常;而南半球平流层极涡崩溃偏晚年极涡崩溃前后平流层环流场异常的整层一致性的变化不典型,而在符号上与极涡崩溃偏早年的异常相反.与北半球平流层极涡崩溃前后环流异常相反明显不同,南半球平流层极涡崩溃偏早或偏晚年在极涡崩溃前后的环流异常保持相同的性质.进一步分析表明行星波活动在南极极涡的崩溃过程中起到了重要作用,极涡崩溃早年上传行星波比极涡崩溃晚年强,并且持续时间长.通过波流相互作用,行星波的异常使得极涡崩溃早年和晚年10月的平流层高纬地区分别为位势高度正异常和负异常,环流异常持续保持可能最终影响了南半球平流层极涡的崩溃时间.分析显示南半球极涡崩溃偏晚与La Niña事件之间可能存在一定的联系,但在极涡崩溃偏早年与赤道太平洋海表温度异常(SSTA)并无明显关系.

关键词: 南半球, 平流层, 极涡崩溃, 大气环流, 异常特征

Abstract:

Polar vortex breakup is an important circulation transformation process in Stratosphere. The 31 years reanalysis data was used to investigate the character of early and late breakup of polar vortex in Southern Hemisphere Stratosphere. The result shows that the circulation anomalies are consistent from lower to high Stratosphere with positive temperature anomalies and geopotential height anomalies and negative zonal wind anomalies prior to and after the early breakups. Such character is not obvious in the late breakups and the anomalies are contrary with that in early breakups. The consistent anomalies during the process of polar vortex breakup in Southern Hemisphere are different with that in Northern Hemisphere polar vortex breakups, which have opposite anomalies before and after the vortex breakups. Further investigation demonstrates that planetary waves play an important role in the Southern Hemisphere vortex breakup. Upward planetary wave is stronger and lasts longer in early breakups, while it is weaker in late breakups. Through wave and circulation interaction, the anomaly of upward planetary wave leads to the positive and negative geopotential height at high latitude in Stratosphere in October of early and late breakup years. The geopotential height anomalies at high latitude in Stratosphere persist and finally affect the breakup time of polar vortex. The analysis also shows that there may be some connection between the late breakups and La Niña, while the connection is not evident in early breakups.

Key words: Southern Hemisphere, Stratosphere, Polar vortex breakup, Atmosphere circulation, Abnormal character

中图分类号: 

  • P421
[1]Solomon S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 1999, 37(3): 275-316.
[2]Charney J G, Drazin P G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 1961, 66(1): 83-109.
[3]Matsuno T. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 1971, 28(8): 1479-1494.
[4]Charlton A J, O'Neill A, Lahoz W A, et al. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution and impacts on ozone. J. Atmos. Sci., 2005, 62(3): 590-602.
[5]Newman P A, Nash E R. The unusual Southern Hemisphere stratosphere winter of 2002. J. Atmos. Sci., 2005, 62(3): 614-628.
[6]Orsolini Y J, Randall C E, Manney G L, et al. An observational study of the final breakdown of the Southern Hemisphere stratospheric vortex in 2002. J. Atmos. Sci., 2005, 62(3): 735-747.
[7]Zurek R W, Manney G L, Miller A J, et al. Interannual variability of the north polar vortex in the lower stratosphere during the UARS mission. Geophys. Res. Lett., 1996, 23(3): 289-292.
[8]Zhou S T, Gelman M E, Miller A J, et al. An inter-hemisphere comparison of the persistent stratospheric polar vortex. Geophys. Res. Lett., 2000, 27(8): 1123-1126.
[9]Waugh G D, Pawson S, Newman P A, et al. Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 1999, 104(D22): 27191-27201.
[10]Waugh G D, Randel W J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci., 1999, 56(11): 1594-1613.
[11]魏科. 北半球平流层极涡年际和季内变异及其对东亚冬季风的影响[博士论文]. 北京: 中国科学院研究生院, 2008. Wei K. Interannual and intraseasonal variabilities of the Stratospheric polar vortex in the Northern Hemisphere and their influence on the East Asian winter monsoon[Ph.D. thesis] (in Chinese). Beijing: Graduate University of the Chinese Academy of Sciences, 2008.
[12]Waugh D W, Rong P P. Interannual variability in the decay of lower stratospheric Arctic vortices. J. Meteor. Soc. Japan, 2002, 80(4B): 997-1012.
[13]Black R X, Mcdaniel B A, Robinson W A. Stratosphere-troposphere coupling during spring onset. J. Climate, 2006, 19(19): 4891-4901.
[14]Black R X, Mcdaniel B A. The dynamics of Northern Hemisphere stratospheric final warming events. J. Atmos. Sci., 2007, 64(8): 2934-2946.
[15]Baldwin M P, Dunkerton T J. Propagation of the Arctic oscillation from the stratosphere to the troposphere. J. Geophys. Res., 1999, 104(D24): 30937-30946.
[16]Baldwin M P, Stephenson D B, Thompson D W J, et al. Stratospheric memory and skill of extended-range weather forecasts. Science, 2003, 301(5633): 636-640.
[17]Baldwin M, Dunkerton T. Stratospheric harbingers of anomalous weather regimes. Science, 2001, 294(5542): 581-584.
[18]李崇银, 顾薇, 潘静. 梅雨与北极涛动及平流层环流异常的关联. 地球物理学报, 2008, 51(6): 1632-1641. Li C Y, Gu W, Pan J. Mei-yu, Arctic Oscillation and stratospheric circulation anomalies. Chinese J. Geophys. (in Chinese), 2008, 51(6): 1632-1641.
[19]李琳, 李崇银, 谭言科等. 平流层爆发性增温对中国天气气候的影响及其在ENSO影响中的作用. 地球物理学报, 2010, 53(7): 1529-1542. Li L, Li C Y, Tan Y K, et al. Stratospheric sudden warming impacts on the weather/climate in China and its role in the influences of ENSO. Chinese J. Geophys. (in Chinese), 2010, 53(7): 1529-1542.
[20]Thompson D W J, Baldwin M P, Solomon S. Stratosphere-Troposphere coupling in the southern hemisphere. J. Atmos. Sci., 2005, 62(3): 708-715.
[21]Kalnay E, Kanamitsu M, Kistler W, et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 1996, 77(3): 437-471.
[22]魏科, 陈文, 黄荣辉. 涡动在南北半球平流层极涡崩溃过程中作用的比较. 大气科学, 2008, 32(2): 206-219. Wei K, Chen W, Huang R H. Comparison of the roles of wave activities in the breakup of the stratospheric polar vortex between the southern and northern hemispheres. Chinese Journal of Atmospheric Sciences (in Chinese), 2008, 32(2): 206-219.
[23]Cohen J, Barlow M, Kushner P, et al. Stratosphere-troposphere coupling and links with Eurasian land surface variability. J. Climate, 2007, 20(21): 5335-5343.
[24]Baldwin M P, Holton J R. Climatology of the stratospheric polar vortex and planetary wave breaking. Amer. Meteor. Soc., 1988, 45(7): 1123-1142.
[25]Chen W, Takahashi M, Graf H F. Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J. Geophys. Res., 2003, 108(D24), 4797, doi:10.1029/2003JD003834.
[26]Li C Y, Long Z X. Evolution of QBO and the influence of ENSO. Chin. Sci. Bull., 1991, 36(12): 1016-1020.
[27]Calvo F N, García R R, García H R, et al. Analysis of the ENSO signal in Tropospheric and Stratospheric temperatures observed by MSU, 1979-2000. J. Climate, 2004, 17(20): 3934-3946.
[28]Taguchi M, Hartmann D L. Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 2006, 19(3): 324-332.
[29]Hoerling M P, Kumar A, Xu T. Robustness of the nonlinear climate response to ENSO's extreme phases. J. Climate, 2000, 14(6): 1277-1293.
[30]Li C Y, Zhou W, Jia X L, et al. Decadal/interdecadal variations of the Ocean temperature and its impacts on climate. Adv. Atmos. Sci., 2006, 23(6): 964-981.
[31]Wang X, Wang D X, Zhou W, et al. Interdecadal modulation of the influence of La Niña events on Mei-yu rainfall over the Yangtze River Valley. Adv. Atmos. Sci., 2012, 29(1): 157-168, doi:10.1007/s00376-011-1021-8.
[1] 王遵娅;周波涛. 影响中国北方强降雪事件年际变化的典型环流背景和水汽收支特征分析[J]. 地球物理学报, 2018, 61(7): 2654-2666.
[2] 罗佳;陈志平;徐晓华. 利用COSMIC掩星资料研究对流层/下平流层大气比湿对ONI指数的响应[J]. 地球物理学报, 2018, 61(2): 466-476.
[3] 王政琪;徐影;周波涛. CMIP5模式对东亚冬季风指数变化及其与冬季大气环流和气温关系的模拟评估[J]. 地球物理学报, 2017, 60(9): 3315-3324.
[4] 何文英;陈洪滨. COSMIC数据验证FY-3 MWTS通道4的观测结果[J]. 地球物理学报, 2017, 60(4): 1284-1292.
[5] 徐晓华;郭金城;罗佳. 利用COSMIC RO数据分析青藏高原平流层重力波活动特征[J]. 地球物理学报, 2016, 59(4): 1199-1210.
[6] 魏栋;田文寿;陈泽宇;张健恺;许平平;黄倩;韩元元;张杰. 青藏高原上空UTLS区域一次地形重力波过程中的物质上传[J]. 地球物理学报, 2016, 59(3): 791-802.
[7] 洪军;姚志刚;韩志刚;赵增亮;方涵先. 台风“梅花”诱发平流层重力波的数值模拟与AIRS观测[J]. 地球物理学报, 2015, 58(7): 2283-2293.
[8] 李刚;谭言科;李崇银;陈书驰;白涛;杨道勇;张滢. 近30年北半球冬季臭氧总量分布特征及其与平流层温度的关系[J]. 地球物理学报, 2015, 58(5): 1475-1491.
[9] 姚志刚;赵增亮;韩志刚. AIRS观测的东亚夏季平流层重力波特征[J]. 地球物理学报, 2015, 58(4): 1121-1134.
[10] 帅晶;黄春明;张绍东;易帆;黄开明;甘泉;龚韵. 2003-2011年平流层顶抬升事件的SABER/TIMED观测[J]. 地球物理学报, 2014, 57(8): 2465-2472.
[11] 梁晨;薛向辉;陈廷娣. 基于COSMIC卫星观测数据的平流层重力波的全球分布特征研究[J]. 地球物理学报, 2014, 57(11): 3668-3678.
[12] 陈丹;陈泽宇;吕达仁. 与东北冷涡相伴的高空急流诱发平流层重力波的数值模拟研究[J]. 地球物理学报, 2014, 57(1): 10-20.
[13] 施春华;李慧;郑彬;郭栋;刘仁强. 一次切断低压诱发的暖区深对流与异常副热带锋及其平流层-对流层交换[J]. 地球物理学报, 2014, 57(1): 21-30.
[14] 黎鑫;李崇银;谭言科;张韧;李刚. 热带太平洋—印度洋温跃层海温异常联合模及其演变[J]. 地球物理学报, 2013, 56(10): 3270-3284.
[15] 毕云;许利;周任君;陈月娟;易明建;邓淑梅. N2O增加对大气环境影响的模拟及其与甲烷和平流层水汽影响的比较[J]. 地球物理学报, 2013, 56(1): 38-46.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!