地球物理学报 ›› 2013, Vol. 56 ›› Issue (6): 1857–1867.doi: 10.6038/cjg20130608

• 空间物理学★大气物理学★大地测量学 • 上一篇    下一篇

大地水准面高对InSAR大范围地壳形变监测的影响分析

李鹏1,2, 李振洪2, 施闯1, 冯万鹏2, 梁存任3, 李陶1, 曾琪明3, 刘经南1   

  1. 1. 武汉大学卫星导航定位技术研究中心, 武汉 430079;
    2. School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ UK;
    3. 北京大学遥感与地理信息研究所, 北京 100871
  • 收稿日期:2012-11-05 修回日期:2013-03-25 出版日期:2013-06-20
  • 通讯作者: 施闯,男,1968年生,教授,主要从事卫星大地测量学及其地震学应用.E-mail:shi@whu.edu.cn E-mail:shi@whu.edu.cn
  • 作者简介:李鹏,男,1984年生,博士生,研究方向为宽幅InSAR与大陆形变分析.E-mail:lipeng@whu.edu.cn
  • 基金资助:

    英国自然环境研究委员会NERC项目(NE/H001085/1);爱丁堡皇家协会与中国国家自然科学基金联合项目(443570/NNS/INT);高等学校学科创新引智计划(111计划)资助项目;科技部863项目(2009AA12Z317);国家自然科学基金项目(41074005/D0401)资助.

Impacts of geoid height on large-scale crustal deformation mapping with InSAR observations

LI Peng1,2, LI Zhen-Hong2, SHI Chuang1, FENG Wan-Peng2, LIANG Cun-Ren3, LI Tao1, ZENG Qi-Ming3, LIU Jing-Nan1   

  1. 1. GNSS Research Center, Wuhan University, Wuhan 430079, China;
    2. School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
    3. Institute of RS and GIS, Peking University, Beijing 100871, China
  • Received:2012-11-05 Revised:2013-03-25 Online:2013-06-20

摘要:

由于InSAR数据处理所用的WGS84参考椭球系统与通用的DEM高程系统(EGM96大地水准参考面)不一致,在InSAR形变监测分析中会引入大地水准面高导致的误差.本文利用覆盖青藏高原北部阿尔金断裂带西段的27景Envisat ASAR宽幅模式数据和44景条带模式数据,研究了大地水准面高与InSAR大范围形变测量不确定性的关系:(1)模拟分析表明对于100 m的垂直基线,8.8 m的DEM测量误差,若研究区域存在20 m的大地水准面高的变化,对宽幅或条带模式InSAR形变测量造成的影响将由3 mm增至10 mm左右;(2)实例验证表明对于不同的研究区域,大地水准面高与该地区地形变化存在较大相关性,对于同一研究区域,垂直基线的大小决定了大地水准面高对InSAR不确定性的影响程度;(3)对于大地水准面高有较大梯度变化的研究区域,组合短基线方法与去除轨道平面的方法难以消除大地水准面高的影响.使用基于WGS84高程系统的DEM,可以为InSAR形变测量分析提供统一的高程基准,有效避免大地水准面高误差的影响.

关键词: 雷达干涉测量, 宽幅InSAR, 大地水准面高, 地壳形变, 阿尔金断裂带

Abstract:

An ellipsoidal height datum (e.g. WGS84) is required in SAR Interferometric processing, whilst DEMs are often referenced to a geoid datum (e.g. EMG96). Therefore, geoid height error is introduced due to the inconsistency of height datums in InSAR derived displacement maps. In this paper, the relationship between geoid heights and uncertainties in InSAR displacements is investigated using 27 scenes of Envisat ASAR ScanSAR images and 44 scenes of Image-mode images covering the western Altyn Tagh Fault, northern Tibetan Plateau. A typical error of 8.8 m in SRTM DEM leads to 3mm uncertainty in an InSAR interferogram with a perpendicular baseline of 100m, whilst a geoid height of 20m can result in 10mm uncertainty. Geoid height varies from one place to another, and is highly correlated with topography. The impacts of geoid height on InSAR displacements increase with perpendicular baselines, but SAR images with a small perpendicular baseline may not be available in some cases. In addition, it may also not always be feasible to use a best-fitting plane to remove the impacts of geoid height. It is thus highly recommended in this paper that DEMs with an ellipsoidal height datum should be employed in interferometric processing, particularly when long-wavelength crustal deformation is targeted.

Key words: SAR interferometry, Wide-swath InSAR, Geoid height, Crustal deformation, Altyn tagh fault

中图分类号: 

  • P225
[1]Li Z, Muller J P, Cross P, et al. Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysical Research, 2005, 110(B3): B03410.
[2]Li Z H, Pasquali P, Cantone A, et al. MERIS atmospheric water vapor correction model for wide swath interferometric synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 257-261.
[3]Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
[4]Hooper A, Zebker H, Segall P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 2004, 31(23): L23611.
[5]Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[6]Elliott J R, Biggs J, Parsons B, et al. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophysical Research Letters, 2008, 35(L12309): 1-5.
[7]Wang H, Wright T J. Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical Research Letters, 2012, 39(7): L07303.
[8]Baker S, Amelung F. Top-down inflation and deflation at the summit of Kīlauea Volcano, Hawaii observed with InSAR. Journal of Geophysical Research: Solid Earth, 2012, 117(B12): B12406.
[9]Gourmelen N, Kim S W, Shepherd A, et al. Ice velocity determined using conventional and multiple-aperture InSAR. Earth and Planetary Science Letters, 2011, 307(1-2): 156-160.
[10]Hammond W C, Blewitt G, Li Z, et al. Contemporary uplift of the Sierra Nevada, western United States, from GPS and InSAR measurements. Geology, 2012, 40(7): 667-670.
[11]Liu P, Li Z H, Hoey T, et al. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 253-264.
[12]Wang H, Wright T J, Yu Y P, et al. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophysical Journal International, 2012, 191(3): 1119-1128.
[13]Cigna F, Osmano?lu B, Cabral-Cano E, et al. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment, 2012, 117: 146-161.
[14]许文斌, 李志伟, 丁晓利等. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数. 地球物理学报, 2012, 55(2): 452-461. Xu W B, Li Z W, Ding X L, et al. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area. Chinese J. Geophys. (in Chinese), 2012, 55(2): 452-461.
[15]Shen Z K, Sun J B, Zhang P, et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2009, 2(10): 718-724.
[16]Hu J, Li Z W, Ding X L, et al. Derivation of 3-D coseismic surface displacement fields for the 2011 Mw9.0 Tohoku-Oki earthquake from InSAR and GPS measurements. Geophysical Journal International, 2013, 192(2): 573-585.
[17]Pritchard M E, Simons M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature, 2002, 418(6894): 167-171.
[18]Wen Y M, Li Z H, Xu C J, et al. Postseismic motion after the 2001 MW7.8 Kokoxili earthquake in Tibet observed by InSAR time series. Journal of Geophysical Research, 2012, 117(B8), B08405.
[19]Holzner J, Bamler R. Burst-mode and ScanSAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 1917-1934.
[20]Guccione P. Interferometry with ENVISAT wide swath ScanSAR data. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 377-381.
[21]Ortiz A B, Zebker H. ScanSAR-to-stripmap mode interferometry processing using ENVISAT/ASAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3468-3480.
[22]Tong X P, Sandwell D T, Fialko Y. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of InSAR GPS and field data. Journal of Geophysical Research, 2010, 115(B04314): 1-19.
[23]Tobita M, Nishimura T, Kobayashi T, et al. Estimation of coseismic deformation and a fault model of the 2010 Yushu earthquake using PALSAR interferometry data. Earth and Planetary Science Letters, 2011, 307(3-4): 430-438.
[24]Hofmann-Wellenhof B, Moritz H. Physical Geodesy, 2nd ed. New York: Springer, 2006.
[25]Koch K R. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd Ed. Berlin, Germany: Springer Verlag, 1999.
[26]Taylor M, Yin A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 2009, 5(3): 199-214.
[27]Jiménez-Munt I, Fernàndez M, Vergés J, et al. Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth and Planetary Science Letters, 2008, 267(1-2): 276-289.
[28]Li P, Shi C, Li Z H, et al. Evaluation of ASTER GDEM using GPS benchmarks and SRTM in China. International Journal of Remote Sensing, 2013, 34(5): 1744-1771.
[29]Li P, Shi C, Li Z, et al. Evaluation of ASTER GDEM ver2 Using GPS Measurements and SRTM ver4. 1 in China.//ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, I-4: 181-186.
[30]Rosen P A, Hensley S, Peltzer G, et al. Updated repeat orbit interferometry package released. EOS Trans. AGU, 2004, 85(5): 47.
[31]Liang C, Zeng Q M, Jia J Y, et al. ScanSAR interferometric processing using existing standard InSAR software for measuring large scale land deformation. Computers & Geosciences, 2013, 51: 439-448.
[32]Rosich B, Monti-Guarnieri A, D'Aria D, et al. ASAR wide swath mode interferometry: Optimisation of the scan pattern synchronization.//Proc. Envisat Symposium 2007(ESA SP-636), Montreux, Switzerland, 2007.
[33]Sandwell D T, Myer D, Mellors R, et al. Accuracy and resolution of ALOS interferometry: Vector deformation maps of the father's day intrusion at kilauea. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3524-3534.
[34]李振洪, 刘经南, 许才军. InSAR数据处理中的误差分析. 武汉大学学报(信息科学版), 2004, 29(1): 72-76. Li Z H, Liu J N, Xu C J. Error analysis in InSAR data processing. Geomatics and Information Science of Wuhan University (in Chinese), 2004, 29(1): 72-76.
[35]张赤军, 骆鸣津, 方剑等 青藏高原大地水准面异常的解释与场源效应初探. 中国科学(地球科学), 2011, 41(8): 1126-1133. Zhang C J, Luo M J, Fang J, et al. The interpretation of Qinghai-Tibet Plateau geoid anomaly and primary research in its field effect. Sci. Sin. Terrae. (in Chinese), 2011, 41: 1126-1133.
[36]Ricard Y, Fleitout L, Froidevaux C. Geoid heights and lithospheric stresses for a dynamic Earth. Annales Geophysicae, 1984, 2(3): 267-286.
[37]Hager B H, Richards M A. Long-wavelength variations in Earth's geoid: Physical models and dynamical implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1989, 328(1599): 309-327.
[38]Guarnieri A M, Prati C. ScanSAR focusing and interferometry. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 1029-1038.
[39]Jarvis A, Reuter H I, Nelson A, et al. Hole-filled SRTM for the globe Version 4. available from the CGIAR-CSI SRTM 90m Database (
[40]Wright T J, Parsons B, England P C, et al. InSAR observations of low slip rates on the major faults of Western Tibet. Science, 2004, 305(5681): 236-239.
[41]Zhang P-Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32(9): 809-812.
[42]Wessel P, Smith W H F. New, improved version of generic mapping tools released. Eos Trans. AGU, 1998, 79(47): 579-579.
[1] 王志;王绪本;黄润秋;刘冠男. 龙门山断裂带多参数深部结构成像与地震成因研究[J]. 地球物理学报, 2017, 60(6): 2068-2079.
[2] 邹长桥;贺日政;段永红;魏运浩;刘巧霞;刘洋. 远震P波层析成像研究阿尔金断裂带东端及其邻区深部结构[J]. 地球物理学报, 2017, 60(6): 2279-2290.
[3] 王伟;党亚民;章传银;鲍李峰;梁诗明;何志堂;邹正波. 基于CORS站网监测三峡地区陆地水负荷对地壳形变和重力变化的影响[J]. 地球物理学报, 2017, 60(3): 962-971.
[4] 吴怿昊;罗志才. 联合多代卫星测高和多源重力数据的局部大地水准面精化方法[J]. 地球物理学报, 2016, 59(5): 1596-1607.
[5] 李永生;申文豪;温扬茂;张景发;李振洪;姜文亮;罗毅. 2015年尼泊尔Mw7.8地震震源机制InSAR反演及强地面运动模拟[J]. 地球物理学报, 2016, 59(4): 1359-1370.
[6] 蒋弥;丁晓利;何秀凤;李志伟;史国强. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10): 3592-3603.
[7] 温扬茂;许才军;李振洪;刘洋;冯万鹏;单新建. InSAR约束下的2008年汶川地震同震和震后形变分析[J]. 地球物理学报, 2014, 57(6): 1814-1824.
[8] 杨莹辉;陈强;刘国祥;程海琴;刘丽瑶;胡植庆. 汶川地震同震形变场的GPS和InSAR邻轨平滑校正与断层滑移精化反演[J]. 地球物理学报, 2014, 57(5): 1462-1476.
[9] 张广伟;雷建设;孙长青. 2014年2月12日新疆于田MS7.3级地震主震及余震序列重定位研究[J]. 地球物理学报, 2014, 57(3): 1012-1020.
[10] 吴传勇;张竹琪;赵翠萍;吴国栋;刘建明;陈建波;胡伟华;宋和平;姚远. 2014年新疆于田MS7.3级地震:巴颜喀喇地块侧向挤出的构造响应[J]. 地球物理学报, 2014, 57(10): 3226-3237.
[11] 蒋弥;丁晓利;李志伟;汪驰升;朱武;柯灵红. 基于时间序列的InSAR相干性量级估计[J]. 地球物理学报, 2013, 56(3): 799-811.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!