地球物理学报 ›› 2013, Vol. 56 ›› Issue (6): 1895–1903.doi: 10.6038/cjg20130612

• 地震学★地球动力学★重力学★地热学 • 上一篇    下一篇

四川芦山7.0地震和汶川8.0地震震源区地壳岩石圈变形特征分析

沈旭章   

  1. 中国地震局兰州地震研究所, 兰州 730000
  • 收稿日期:2013-05-20 修回日期:2013-06-14 出版日期:2013-06-20
  • 作者简介:沈旭章,男,1976年生,博士,研究员,主要从事地球深部结构,地震学和定点形变观测方面的研究. E-mail:shenxzh@gmail.com
  • 基金资助:

    中国地震局地震预测研究所基本科研业务专项(2011IESLZ05)和国家自然基金项目(41274093和40904014)资助.

An analysis of the deformation of the crust and LAB beneath the Lushan and Wenchuan earthquakes in Sichuan province

SHEN Xu-Zhang   

  1. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China
  • Received:2013-05-20 Revised:2013-06-14 Online:2013-06-20

摘要:

地壳和岩石圈变形特征研究对于深入了解中强地震的深部孕震环境具有重要科学意义.本文联合P和S波远震接收函数偏移成像结果,对发生过芦山7.0地震和汶川8.0地震的龙门山断裂带及附近区域地壳和岩石圈结构进行分析.结果揭示出在青藏高原向四川盆地过渡的龙门山断裂带,Moho面和岩石圈底界面(LAB)呈现出强烈变形,特别是芦山地震和汶川地震震源区下方地壳出现了错断、下凹,岩石圈也呈现下凹变形特征.这种地壳及岩石圈变形所代表的高应力的积累可能是汶川和芦山地震发生的重要深部地球动力学背景.

关键词: 芦山地震, 汶川地震, S波接收函数, P波接收函数, 岩石圈

Abstract:

Study of the crustal and lithospheric deformation is important to understanding of the deep environment of moderate and major earthquakes. In this work, the P and S receiver functions from the Sichuan seismic network are jointly used to study the crustal and lithospheric structures beneath the Lushan 7.0 earthquake on 20 April 2013 and Wenchuan 8.0 earthquake on 12 May 2008. The results indicate that there is strong deformation of the Moho and LAB (lithosphere-asthenosphere boundary) beneath the transition region from the Tibetan plateau to the Sichuan basin. The offset and downward warping of the Moho are observed beneath the Lushan and Wenchuan earthquakes with the sinking LAB. Such intense deformation may imply the accumulation of high stresses, which is probably the important geodynamic context of the Lushan and Wenchuan earthquakes.

Key words: Lushan earthquake, Wenchuan earthquake, S receiver function, P receiver function, Lithosphere

中图分类号: 

  • P315
[1]刘杰, 易桂喜, 张致伟等. 2013年4月20日四川芦山M7.0级地震介绍. 地球物理学报, 2013, 56(4): 1404-1407, Liu J, Yi G X, Zhang Z W, et al. Introduction to the Lushan, Sichuan M7.0 earthquake on 20 April 2013. Chinese J. Geophys. (in Chinese), 2013, 56(4): 1404-1407, doi: 10.6038/cjg20130434.
[2]张勇, 许力生, 陈运泰. 芦山4.20地震破裂过程及其致灾特征初步分析. 地球物理学报, 2013, 56(4): 1408-1411, Zhang Y, Xu L S, Chen Y T. Rupture process of the Lushan 4.20 earthquake and preliminary analysis on the disaster-causing mechanism. Chinese J. Geophys. (in Chinese), 2013, 56(4): 1408-1411, doi: 10.6038/cjg20130435.
[3]王卫民, 郝金来, 姚振兴. 2013年4月20日四川芦山地震震源破裂过程反演初步结果. 地球物理学报, 2013, 56(4): 1412-1417, Wang W M, Hao J L, Yao Z X. Preliminary result for rupture process of Apr. 20, 2013, Lushan Earthquake, Sichuan, China. Chinese J. Geophys. (in Chinese), 2013, 56(4): 1412-1417, doi: 10.6038/cjg20130436.
[4]曾祥方, 罗艳, 韩立波等. 2013年4月20日四川芦山MS7.0地震: 一个高角度逆冲地震. 地球物理学报, 2013, 56(4): 1418-1424, Zeng X F, Luo Y, Han L B, et al. The Lushan MS7.0 earthquake on 20 April 2013: A high-angle thrust event. Chinese J. Geophys. (in Chinese), 2013, 56(4): 1418-1424, doi: 10.6038/cjg20130437.
[5]张培震, 徐锡伟, 闻学泽等. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 2008, 51(4): 1066-1073. Zhang P Z, Xu X W, Wen X Z, et al. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chinese J. Geophys. (in Chinese), 2008, 51(4): 1066-1073.
[6]Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276(5313): 788-790. doi: 10.1029/2002TC001402.
[7]Clark M K, Royden L H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28(8): 703-706. doi: 10.1130/0091-7613.
[8]石玉涛, 高原, 张永久等. 松潘—甘孜地块东部、川滇地块北部与四川盆地西部的地壳剪切波分裂. 地球物理学报, 2013, 56(2): 481-494. Shi Y T, Gao Y, Zhang Y J, et a1. Shear-wave splitting in the crust in Eastern Songpan-Garzê block, Sichuan-Yunnan block and Western Sichuan Basin. Chinese J. Geophys. (in Chinese), 2013, 56(2): 481-494, doi: 10.6038/cjg20130212.
[9]高原, 王琼, 赵博涛等. 龙门山断裂带中南段的一个破裂空段—芦山地震的震后效应. 中国科学 (D辑: 地球科学), 2013, 43(6): 1038-1046. Gao Y, Wang Q, Zhao B T, et al. A rupture blank zone in middle south part of Longmenshan Faults: Effect after Lushan MS7.0 earthquake of 20 April 2013 in Sichuan, China. Science China: Earth Sciences, 2013, doi:10.1007/s11430-013-4646-x.
[10]Wang C Y, Han W B, Wu J P, et al. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. J. Geophys. Res., 2007, 112(B7): B07307, doi: 10.1029/2005JB003873.
[11]Xu L L, Rondenay S, van der Hilst R D. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Inter., 2007, 165(3-4): 176-193.
[12]Burchfiel B C, Royden L H, van der Hilst R D, et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today, 2008, 18(7): 4-11, doi: 10.1130/GSATG18A.1.
[13]刘启元, 李昱, 陈九辉等. 汶川MS8.0地震: 地壳上地幔S波速度结构的初步研究. 地球物理学报, 2009, 52(2): 309-319. Liu Q Y, Li Y, Chen J H, et al. Wenchuan MS8.0 earthquake: preliminary study of the S-wave velocity structure of the crust and upper mantle. Chinese J. Geophys. (in Chinese), 2009, 52(2): 309-319.
[14]雷建设, 赵大鹏, 苏金蓉等. 龙门山断裂带地壳精细结构与汶川地震发震机理. 地球物理学报, 2009, 52(2): 339-345. Lei J S, Zhao D P, Su J R, et al. Fine seismic structure under the Longmenshan fault zone and the mechanism of the large Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 2009, 52(2): 339-345.
[15]楼海, 王椿镛, 吕智勇等. 2008年汶川Ms8.0级地震的深部构造环境——远震P波接收函数和布格重力异常的联合解释. 中国科学D辑: 地球科学, 2008, 38(10): 1207-1220. Lou H, Wang C Y, Lü Z Y, et al. Deep tectonic setting of the 2008 Wenchuan Ms8.0 earthquake in southwestern China-Joint analysis of teleseismic P-wave receiver functions and Bouguer gravity anomalies. Science in China Series D-Earth Sciences, 2009, 52(2) 166-179, doi: 10.1007/s11430-009-0009-z.
[16]王椿镛, 楼海, 吕智勇等. 青藏高原东部地壳上地幔S波速度结构: 下地壳流的深部环境. 中国科学D辑: 地球科学, 2008, 38(1): 22-32. Wang C Y, Lou H, Lü Z Y, et al. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau-Deep environment of lower crustal flow. Science in China Series D-Earth Sciences, 2008, 51(2): 263-274, doi: 10.1007/s11430-008-0008-5.
[17]沈旭章, 梅秀苹, 杨辉. 汶川地震破裂带地壳速度结构研究. 地球物理学进展, 2011, 26(2): 477-488, Shen X Z, Mei X P, Yang H. Study on the crustal structures beneath Wenchuan earthquake rupture zone. Progress in Geophysics (in Chinese), 2011, 26(2): 477-488, doi: 10.3969/j.issn.1004-2903.2011.02.012.
[18]Zhang Z J, Wang Y H, Chen Y, et al. Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophysical Research Letter, 2009, 36(17): L17310.
[19]Pan S Z, Niu F L. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis. Earth Planet. Sci. Lett., 2011, 303(3-4): 291-298.
[20]Zhang Z J, Yuan X H, Chen Y, et al. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth and Planetary Science Letters, 2010, 292(3-4): 254-264.
[21]Zhang Z J, Deng Y F, Teng J W, et al. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asia Earth Sciences, 2011, 40(4): 977-989.
[22]Zhang Z J, Klemperer S, Bai Z M, et al. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Research, 2011, 19(4): 994-100.
[23]Hu J F, Yang H Y, Xu X Q, et al. Lithospheric structure and crust-mantle decoupling in the southeast edge of the Tibetan Plateau. Gondwana Research, 2012, 22(3-4): 1060-1067, doi:./10.1016/j.gr.2012.01.003.
[24]Chen Y, Zhang Z J, Sun C Q, et al. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Research, 2012, doi: 10.1016/j.gr.2012.04.003.
[25]Shen X Z, Mei X P, Zhang Y S. The crustal and upper-mantle structures beneath the northeastern margin of Tibet. Bull. Seismol. Soc. Am., 2011, 101(6): 2782-2795, doi: 10.1785/0120100112.
[26]Tian X, Wu Q, Zhang Z, et al. Joint imaging by teleseismic converted and multiple waves and its applicaton in the INDEPTH—III passive seismic array. Geophys. Res. Lett., 2005, 32: L21315, doi: 10.1029/2005GL023686.
[27]Tian X B, Zhao D P, Zhang H S, et al. Mantle transition zone topography and structure beneath the central Tien Shan orogenic belt. J. Geophys. Res., 2010, 115(B10): B10308, doi: 10.1029/2008JB006229.
[28]Tian X B, Teng J W, Zhang H S, et al. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis. Physics of the Earth and Planetary Interiors, 2011, 184(3-4): 186-193, doi: 10.1016/j.pepi.2010.11.007.
[29]Wittlinger G, Farra V. Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton. Earth Planet. Sci. Lett., 2007, 254(3-4): 404-415.
[30]Yuan X H, Ni J, Kind R, et al. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J. Geophys. Res., 1997, 102(B12): 27491-27500.
[31]柳畅, 朱伯靖, 石耀霖. 粘弹性数值模拟龙门山断裂带应力积累及大震复发周期. 地质学报, 2012, 86(1): 157-169. Liu C, Zhu B J, Shi Y L. Stress accumulation of the Longmenshan fault and recurrence interval of Wenchuan earthquake based on viscoelasticity simulation. Acta Geologica Sinica (in Chinese), 2012, 86(1): 157-169.
[32]郑秀芬, 欧阳飚, 张东宁等. "国家数字测震台网数据备份中心"技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 2009, 52(5): 1412-1417, Zheng X F, Ouyang B, Zhang D N, et al. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese J. Geophys. (in Chinese), 2009, 52(5): 1412-1417, doi: 10.3969/j.issn.0001-5733.2009.05.031.
[33]Wessel P, Smith W H F. New version of the generic mapping tools. Eos Trans. Am. Geophys. Union., 1995, 76(33): 329.
[1] 李建有;石宝文;徐晓雅;胡家富. 利用远震接收函数探测四川盆地及周边地区的地壳结构[J]. 地球物理学报, 2018, 61(7): 2719-2735.
[2] 韩江涛;郭振宇;刘文玉;侯贺晟;刘国兴;韩松;刘立家;王天琪. 松辽盆地岩石圈减薄的深部动力学过程[J]. 地球物理学报, 2018, 61(6): 2265-2279.
[3] OURO-DJOBO SEDIKOU B.;魏文博;叶高峰;金胜;景建恩;姬磊喆;董浩;张乐天;尹曜田;谢成良. 华北大地电磁测深阵列观测实验与岩石圈导电性快速成像模型[J]. 地球物理学报, 2018, 61(6): 2508-2524.
[4] 李海兵;许志琴;马胜利;赵俊猛. 汶川地震和九寨沟地震断层作用及动力学过程研究进展——纪念汶川地震十周年[J]. 地球物理学报, 2018, 61(5): 1653-1665.
[5] 许志琴;吴忠良;李海兵;李丽. 世界上最快回应大地震的汶川地震断裂带科学钻探[J]. 地球物理学报, 2018, 61(5): 1666-1679.
[6] 李海兵;许志琴;王焕;张蕾;何祥丽;司家亮;孙知明. 汶川地震断裂带滑移行为、物理性质及其大地震活动性——来自汶川地震断裂带科学钻探的证据[J]. 地球物理学报, 2018, 61(5): 1680-1697.
[7] 牛露;周永胜;姚文明;邵同宾;马玺;党嘉祥;何昌荣. 高温高压条件下彭灌杂岩的强度对汶川地震发震机制的启示[J]. 地球物理学报, 2018, 61(5): 1728-1740.
[8] 李晓慧;姚路;马胜利;杨晓松. 龙门山断裂带金河磷矿剖面断层泥的低速至高速摩擦性质研究[J]. 地球物理学报, 2018, 61(5): 1741-1757.
[9] 杨晓松;段庆宝;陈建业. 汶川地震断裂带水岩相互作用及其对断裂带演化影响[J]. 地球物理学报, 2018, 61(5): 1758-1770.
[10] 张彬;刘耀炜;方震;官致君;张磊;郭丽爽. 汶川地震科学钻探2号孔(WFSD-2)随钻泥浆氢和汞浓度与断裂构造关系[J]. 地球物理学报, 2018, 61(5): 1771-1781.
[11] 尹昊;单新建;张迎峰;屈春燕;王振杰;刘晓东;张国宏;李彦川. 高频GPS和强震仪数据在汶川地震参数快速确定中的初步应用[J]. 地球物理学报, 2018, 61(5): 1806-1816.
[12] 赵由佳;张国宏;单新建;尹昊;屈春燕. 考虑地形起伏和障碍体破裂的汶川地震强地面运动数值模拟[J]. 地球物理学报, 2018, 61(5): 1853-1862.
[13] 朱守彪;袁杰. 2008年汶川大地震中北川地区极重震害的物理机制研究[J]. 地球物理学报, 2018, 61(5): 1863-1873.
[14] 史海霞;孟令媛;张雪梅;常莹;杨振涛;谢蔚云;服部克巳;韩鹏. 汶川地震前的b值变化[J]. 地球物理学报, 2018, 61(5): 1874-1882.
[15] 王凯英;郭彦双;冯向东. 应力时空演化揭示出的汶川地震前亚失稳过程[J]. 地球物理学报, 2018, 61(5): 1883-1890.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!