地球物理学报 ›› 2013, Vol. 56 ›› Issue (4): 1369–1380.doi: 10.6038/cjg20130431

所属专题: 青藏高原

• 应用地球物理学 • 上一篇    下一篇

青藏高原构造结构特点:新重力异常成果的启示

张燕1,2, 程顺有1, 赵炳坤2, 董云鹏1, 韩革命3, 张明华4, 杨亚斌3, 崔丽艳2   

  1. 1. 西北大学大陆动力学国家重点实验室, 西北大学地质学系,西安 710069;
    2. 陕西地勘局第二综合物探大队,西安 710016;
    3. 中国地质科学院地球物理地球化学研究所,河北廊坊 100010;
    4. 中国地质调查局发展研究中心,北京 100037
  • 收稿日期:2012-07-26 修回日期:2013-03-20 出版日期:2013-04-20
  • 通讯作者: 程顺有,男,教授,主要从事地质-地球物理综合研究.E-mail:shunyouc@nwu.edu.cn E-mail:shunyouc@nwu.edu.cn
  • 作者简介:张燕,女,在读博士生,主要从事应用地球物理研究.E-mail:yanzhym@163.com
  • 基金资助:

    中国地质调查局青藏高原基础地质调查成果集成和综合研究项目(基[2006]001-01)资助.

The feature of tectonics in the Tibet Plateau from new regional gravity signals

ZHANG Yan1,2, CHENG Shun-You1, ZHAO Bing-Kun2, DONG Yun-Peng1, HAN Ge-Ming3, ZHANG Ming-Hua4, YANG Ya-Bin3, CUI Li-Yan2   

  1. 1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University Xi'an 710069, China;
    2. The Second Geophysical Exploration Brigade, Bureau of Geology and Minerals of Shanxi Province, Xi'an 710069, China;
    3. Institute of Geophysical and Geochemical Exploration, CAGS, Hebei Province Langfang 100010, China;
    4. Research Center of China Geological Survey Development, Beijing 100037, China
  • Received:2012-07-26 Revised:2013-03-20 Online:2013-04-20

摘要:

截至2007年1:1000000区域重力工作已基本覆盖青藏高原全区,这些全新的重力成果揭示了很多有意义的现象.通过多方法处理分析研究不同深度层次的重力场特征及正反演计算构建地壳模型,认为:重力异常形态显示青藏高原独成体系,与相邻块体具有多样化的接触关系.已发现蛇绿岩的结合带、弧盆系和岩浆岩带是幅值不等、规模不一的重力高和重力低,表明青藏高原是具有多条结合带的拼合体;班公湖—怒江结合带是高原内最主要的重力高异常带,长达千余公里,将不同深度层次的重力场分成截然不同的南北两大区块,为它是冈瓦纳大陆北界提供了依据;局部重力异常指示青藏高原构造形迹自南而北以东西走向为主,东部则为北西—南北走向,具有与大地构造相似的分区特征; 85°E和92°E附近存在较大尺度的南北和北东走向的重力异常特征线,揭示出青藏高原腹地的深部结构具有东中西三分现象,与表壳的东西走向格局形成对比.

关键词: 青藏高原, 重力异常, 结合带, 构造特征线

Abstract:

As of 2007, 1:1000000 regional gravity investigations have been completed in Qinghai-Tibet Plateau. We obtain useful information by analyzing the gravity anomaly in different depth levels of the plateau, based on various data processing results to build a structure model. Our results show that the gravity feature in Tibet is unique, with diverse contact relations with adjacent blocks. The gravity minimum and maximum can be related to the arc-basin and magmatic belts, and suture zones where amphibolites were found. This feature above shows that Tibet is pieced together with many sutures. The gravity field is divided into two parts of the southern and northern within the plateau in different depth by the Bouguer gravity anomaly of Bangong-Nujiang suture zone, which is the most important gravity maximum anomalies over 1000 km long. This information provides evidence that Bangong-Nujiang suture is the northern boundary of Gondwana. Local gravity anomaly exhibits similar feature of geotectonic division. Majority of structural trend is EW-striking from south to north, whereas in the eastern plateau it strikes NW-SN. There are two gravity anomaly lines near the 85°E and 92°E longitude. It suggests that the deep structure of plateau is divided into three parts from east to west, in contrast to the EW-striking surficial structure.

Key words: Tibet plateau, Gravity anomaly, Suture, Structure typical line

中图分类号: 

  • P312
[1]卢占武, 高锐, 李秋生等. 中国青藏高原深部地球物理探测与地球动力学研究(1958—2004). 地球物理学报, 2006, 49(3): 753-770. Lu Z W, Gao R, Li Q S, et al. Deep geophysical probe and geodynamic study on the Qinghai-Tibet Plateau (1958—2004). Chinese J. Geophys. (in Chinese), 2006, 49(3): 753-770.
[2]彭聪. 中国西部布格重力异常特征和地壳密度结构. 地球学报, 2005, 26(5): 417-422. Peng C. Bouguer anomalies and crustal density structure in western China. Acta Geoscientica Sinica (in Chinese), 2005, 26(5): 417-422.
[3]蒋福珍. 三江地区重力场特征和岩石圈构造. 武汉大学学报信息科学版, 2002, 27(2): 122-126. Jiang F Z. Gravity field character and lithosphere tectonics in Sanjiang Region. Geomatics and Information Science of Wuhan University (in Chinese), 2002, 27(2): 122-126.
[4]赵俊猛, 唐伟, 黎益仕. 青藏高原东北缘岩石圈密度与磁化强度及动力学含义. 地学前缘, 2006, 13(5): 391-400. Zhao J M, Tang W, Li Y S. Lithospheric density and geomagnetic intensity in northeastern margin of the Tibetan plateau and tectonic implications. Earth Science Frontiers (in Chinese), 2006, 13(5): 391-400.
[5]王谦身, 安玉林. 青藏高原东部玛多—沙马地区的重力场与深部构造. 地球物理学进展, 2001, 16(4): 4-10. Wang Q S, An Y L. Gravity field and deep structure of Madoi-shama region in eastern Qinghai-Xizang (Tibetan) Plateau. Progress in Geophysics (in Chinese), 2001, 16(4): 4-10.
[6]滕吉文, 王谦身, 王光杰等. 喜马拉雅"东构造结"地区的特异重力场与深部地壳结构. 地球物理学报, 2006, 49(4): 1045-1052. Teng J W, Wang Q S, Wang G J, et al. Specific gravity field and deep crustal structure of the 'Himalayas east structural knot'. Chinese J. Geophys. (in Chinese), 2006, 49(4): 1045-1052.
[7]赵文津, 赵逊, 蒋忠惕等. 西藏羌塘盆地的深部结构特征与含油气远景评价. 中国地质. 2006, 33(1): 1-13. Zhao W J, Zhao X, Jiang Z T, et al. Deep structure and petroleum prospect evaluation of the Qiangtang basin, Tibet. Geology in China (in Chinese), 2006, 33(1): 1-13.
[8]王谦身, 武传真, 江为为. 青藏高原西部吉隆—鲁谷地区的重力场与地壳构造. 科学通报, 1997, 42(8): 858-862. Wang Q S, Wu C Z, Jiang W W. Crustal structures and Gravity fields of Jilong-Sama region in the western Qinghai-Xizang (Tibet) Plateau. Chinese Sci. Bull. (in Chinese), 1997, 42(8): 858-862.
[9]孟令顺, 齐立, 高锐等. 横过阿尔金山的重力测量及初步解释. 长春科技大学学报, 1998, 28(3): 345-350. Meng L S, Qi L, Gao R, et al. Gravity Survey and Isostatic message along the profile of aergan (Xinjiang)-Laomangya (Qinghai). Journal of Changchun University of Science and Technology (in Chinese), 1998, 28(3): 345-350.
[10]袁果田, 张勇军. 青藏高原均衡重力异常研究. 地壳形变与地震, 1997, 17(1): 76-80. Yuan G T, Zhang Y J. Discussion on Isostatic Gravity anomaly in Qinghai-Xizang Plateau. Crustal Deformation and Earthquake (in Chinese), 1997, 1997, 17(1): 76-80.
[11]马宗晋, 高祥林, 宋正范. 中国布格重力异常水平梯度图的判读和构造解释. 地球物理学报, 2006, 49(1): 106-114. Ma Z J, Gao X L, Song Z F. Analysis and tectonic interpretation to the horizontal-gradient map calculated from Bouguer gravity data in the China mainland. Chinese J. Geophys. (in Chinese), 2006, 49(1): 106-114.
[12]郑洪伟, 孟令顺, 贺日政. 青藏高原布格重力异常匹配滤波分析及其构造意义. 中国地质, 2010, 37(4): 995-1001. Zheng H W, Meng L S, He R Z. The matched-filter analysis of Bouguer gravity anomaly in Qinghai-Tibet Plateau and its tectonic implications. Geology in China (in Chinese), 2010, 37(4): 995-1001.
[13]潘桂棠, 李兴振, 王立全. 青藏高原及邻区大地构造单元初步划分. 地质通报, 2002, 21(11): 701-707. Pan G T, LI X Z, Wang L Q. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions. Geological Bulletin of China (in Chinese), 2002, 21(11): 701-707.
[14]许志琴, 杨经绥, 李海兵等. 青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 2006, 33(2): 221-238. Xu Z Q, Yang J S, Li H B, et al. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China (in Chinese), 2006, 33(2): 221-238.
[15]杨经绥, 许志琴, 李天福等. 青藏高原拉萨地块中的大洋俯冲型榴辉岩: 古特提斯洋盆的残留. 地质通报, 2007, 26(10): 1277-1287. Yang J S, Xu Z Q, Li T F, et al. Oceanic subduction-type eclogite in the Lhasa block, Tibet, China: Remains of the Paleo-Tethys ocean basin. Geological Bulletin of China (in Chinese), 2007, 26(10): 1277-1287.
[16]潘桂棠, 丁俊, 姚东生等. 青藏高原及邻区地质图(1: 1500000)说明书. 成都: 成都地图出版社, 2004. 5-20. Pan G T, Ding J, Yao D S, et al. The Qinghai-Tibet Plateau and its adjacent areas geological map 1:150 million (in Chinese). Chengdu: Cartographic Publishing House, 2004. 5-20.
[17]Zhang Z J, Deng Y F, Teng J W, et al. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 2011, 40(4): 977-989.
[18]肖序常, 姜枚等. 中国西部岩石圈三维结构及演化. 北京: 地质出版社, 2008: 137-224. Xiao X C, Jiang M, et al. The Three-dimensional Structure of Lithosphere and its Evolution in Western Part of China (in Chinese). Beijing: Geological Publishing House, 2008: 137-224.
[19]周华伟, Murphy M A, 林清良. 西藏及其周围地区地壳、地幔地震层析成像—印度板块大规模俯冲于西藏高原之下的证据. 地学前缘, 2002, 9(4): 285-292. Zhou H W, Murphy M A, Lin Q L. Tomographic imaging of the Tibet and surrounding region: evidence for wholesale under thrusting of Indian slab beneath the Tibetan Plateau. Earth Science Frontiers (in Chinese), 2002, 9(4): 285-292.
[20]高锐, 肖序常, 刘训等. 新疆地学断面深地震反射剖面揭示的西昆仑—塔里木结合带岩石圈细结构. 地球学报, 2001, 22(6): 547-552. Gao R, Xiao X C, Liu X, et al. Detail Lithospheric structure of the contact zone of West Kunlun and Tarim Evealed by deep seismic reflection profile along the Xinjiang Geotransect. Acta Geoscientica Sinica (in Chinese), 2001, 22(6): 547-552.
[21]薛光琦, 姜枚, 史大年等. 利用天然地震震相探讨阿尔金地区地壳结构. 地质论评, 1999, 45(2): 120-124. Xue G Q, Jiang M, Shi D N, et al. Study of the Crustal structure in the Altun area using the Teleseismic Phase. Geological Review (in Chinese), 1999, 45(2): 120-124.
[22]熊盛青, 周伏洪, 姚正煦等. 青藏高原中西部航磁调查. 北京: 地质出版社, 2001: 20-48. Xiong S Q, Zhou F H, Yao Z X, et al. Areomagnetic survey in central and western Qinghai-Tibet plateau (in Chinese). Beijing: Geological Publishing House, 2001: 20-48.
[23]邱瑞照, 周肃, 邓晋福等. 西藏班公湖—怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖—怒江蛇绿岩带形成时代. 中国地质, 2004, 31(3): 262-268 Qiu R Z, Zhou S, Deng J F, et al. Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangong Co-Nujiang ophiolite belt, Tibet-with a discussion of the age of the Bangong Co-Nujiang Ophiolite Belt. Geology in China (in Chinese), 2004, 31(3): 262-268.
[24]李才, 谢尧武, 董永胜等. 北澜沧江带的性质—是冈瓦纳板块与扬子板块的界线吗? 地质通报, 2009, 28(12): 1711-1719. Li C, Xie R W, Dong Y S, et al. The North Lancangjiang suture: the boundary between Gondwana and Yangtze? Geological Bulletin of China (in Chinese), 2009, 28(12): 1711-1719.
[25]李才. 青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年. 地质论评, 2008, 54(1): 105-119. Li C. A review on 20 years' study of the Longmu Co-Shuanghu-Lancang River suture Zong in Qinghai-Xizang (Tibet) Plateau. Geological Review (in Chinese), 2008, 54(1): 105-119.
[26]Zhao W J, Mechie J, Brown L D, et al. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys J. Int., 145(2): 486-498.
[27]熊绍柏, 刘宏兵. 青藏高原西部的地壳结构. 科学通报, 1997, 42(12): 1309-1311. Xiong S B, Liu H B. Crustal structure in the western Qinghai-Xizang Plateau. Chinese Sci. Bull. (in Chinese), 1997, 42(12): 1309-1311.
[28]李永华, 田小波, 吴庆举等. 青藏高原INDEPTHⅢ剖面地壳厚度与泊松比: 地质与地球物理含义. 地球物理学报, 2006, 49(4): 1037-1044. Li Y H, Tian X B, Wu Q J, et al. The Poisson ratio and crustal structure of the central Qinghai-Xizang inferred from INDEPTH-III teleseismic waveforms: Geological and Geophysical implications. Chinese J. Geophys. (in Chinese), 2006, 49(4): 1037-1044.
[29]Kind R, Yuan X, Saul J, et al. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 2002, 298(5596): 1219-1221.
[30]张中杰, 李英康, 王光杰等. 藏北地壳东西向结构与"下凹"莫霍面——来自宽角反射剖面的启示. 中国科学D辑, 2001, 31(11): 881-888. Zhang Z J, Li Y K, Wang G J, et al. East-west crustal structure and "down-bowing" Moho under the northern Tibet revealed by wide-angle seismic profile. Science in China (Series D), 2002, 45(6): 550-558.
[31]徐强, 赵俊猛, 崔仲雄等. 青藏高原班公湖—怒江缝合带中部的Moho错断. 科学通报, 2010, 55(1): 80-86. Xu Q, Zhao J M, Cui Z X, et al. Moho offset beneath the central Bangong-Nujiang suture of Tibetan Plateau. Chinese Sci. Bull. (in Chinese), 2010, 55(7): 607-613.
[32]谭捍东, 魏文博, Unsworth M等. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究. 地球物理学报, 2004, 47(4): 685-690. Tan H D, Wei W B, Unsworth M, et al. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang suture in the southern Xizang plateau. Chinese J. Geophys. (in Chinese), 2004, 47(4): 685-690.
[33]赵政璋, 李永铁, 叶和飞等. 青藏高原大地构造特征及盆地演化. 北京: 科学出版社, 2000: 126-287. Zhao Z Z, Li Y T, Ye R F, et al. Tectionic Characteristics and Basin Evolution on the Qinghai-Tibet Plateau (in Chinese). Beijing: Science Press, 2000: 126-287.
[34]李海鸥, 徐锡伟, 姜枚. 青藏高原中南部的深部地球动力学过程-Hi-Climb剖面北段接收函数和走时残差分析. 中国科学D辑, 2008, 38(5): 622-629. Li H O, Xu X W, Jiang M. Continental dynamic process of the middle-southern of Qinghai-Tibet plateau: Analysis of Receiver function and Travel time residuals in the nouthern of Hi-Climb profile. Science in China (Series D) (in Chinese), 2008, 38(5): 622-629.
[35]滕吉文, 张中杰, 杨顶辉等. 青藏高原地体划分的地球物理标志研究. 地球物理学报, 1996, 39(5): 629-641. Teng J W, Zhang Z J, Yang D H, et al. The study of geophysical criterion for dividing Terranes in Qinghai-xizang Plateau. Chinese J. Geophys. (Acta Geophysica Sinica) (in Chinese), 1996, 39(5): 629-641.
[36]Sun R M, Zhang Z J, Zhu J S. Seismic evidence of mass eastern ex-trusion from surface wave tomography of Tibet. // Abstracts of XXIII General Assembly of the International Union of Geodesy and Geophysics, Sapporo: IUGG, 2003, B: 485-493.
[37]李才, 翟庆国, 程立人等. 青藏高原羌塘地区几个关键地质问题的思考. 地质通报, 2005, 24(4): 295-301. Li C, Zhai Q G, Cheng L R, et al. Thought on some key geological problems in the Qiangtang area, Qinghai-Tibet Plateau. Geological Bulletin of China (in Chinese), 2005, 24(4): 295-301.
[38]王毅智, 祁生胜, 安守文等. 青海南部杂多地区超镁铁质-镁铁质岩石的特征及Ar-Ar定年. 地质通报, 2007, 26(6): 668-674. Wang Y Z, Qi S S, An S W, et al. Characteristics and Ar-Ar dating of ultramafic-mafic rocks in the Zadoi area, southern Qinghai, China. Geological Bulletin of China (in Chinese), 2007, 26(6): 668-674.
[39]李秋生, 彭苏萍, 高锐等. 青藏高原北部巴颜喀拉构造带基底隆起的地震学证据. 地质通报, 2003, 22(10): 782-788. Li Q S, Peng S P, Gao R, et al. Seismic evidence of the basement uplift in the Bayan Har tectonic belt, Qinghai, and its tectonic significance. Geological Bulletin of China (in Chinese), 2003, 22(10): 782-788.
[40]许志琴, 杨经绥, 姜枚等. 青藏高原北部东昆仑—羌塘地区的岩石圈结构及岩石圈剪切断层. 中国科学D辑, 2001, 31(增刊): 128-133. Xu Z Q, Yang J S, Jiang M, et al. Lithosphere structure and Shear fault in the northern Qinghai-Tibet Plateau and its adjacent regions. Science in China Series D: Earth Sciences (in Chinese), 2001, 31(Supplement): 128-133.
[41]Zhang Z J, Klemperer S, Bai Z M, et al. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Research, 2011, 19(4): 994-1007.
[42]嘉世旭, 张先康, 赵金仁等. 若尔盖盆地及周缘褶皱造山带地壳结构-深地震测深结果. 中国科学D辑: 地球科学, 2009, 39(9): 1200-1208. Jia S X, Zhang X K, Zhao J R, et al. Deep seismic sounding data reveal the crustal structures beneath Zoigê basin and its surrounding folded orogenic belts. Science in China Series D: Earth Sciences, 2010, 53(2): 203-212.
[43]李亚林, 王成善, 伊海生等. 西藏北部双湖地堑构造与新生代伸展作用. 中国科学(D辑), 2001, 31(增刊): 228-233. Li Y L, Wang C S, Yi H S, et al. The Shuang-Hu graben structure and the Cenozoic extension in the northern Tibet. Science in China Series D: Earth Sciences (in Chinese), 2001, 31(S1): 228-233.
[44]贺日政, 高锐. 西藏高原南北向裂谷研究意义. 地球物理学进展, 2003, 18(1): 35-43. He R Z, Gao R. Some significances of studying north-southern rift in Tibet plateau. Progress in Geophysics (in Chinese), 2003, 18(1): 35-43.
[45]钱辉, 姜枚, Chen W P等. 青藏高原吉隆-鲁谷(Hi-Climb)层析成像与印藏碰撞的消减作用. 地球物理学报, 2007, 50(5): 1427-1436. Qian H, Jang M, Chen W P et al. Tomography of Gyirong-Lugu profile(Hi-Climb) and the subduction of Indian-Tibet collision. Chinese J. Geophys. (in Chinese), 2007, 50(5): 1427-1436.
[46]张雪梅, 孙若昧, 滕吉文. 青藏高原及其邻区地壳、岩石圈和软流层厚度研究. 科学通报, 2007, 52(3): 332-338. Zhang X M, Sun R M, Teng J W. Study of Crustal, Lithospheric and depth of Asthenospheric in Qinghai-Tibet Plateau and its adjacent regions. Chinese Sci. Bull. (in Chinese), 2007, 52(3): 332-338.
[47]崔笃信, 王庆良, 王文萍等. 甘青块体东西部运动分界带的确定. 大地测量与地球动力学, 2007, 27(1): 24-30. Cui D X, Wang Q L, Wang W P, et al. Determination of movement boaundary belt of Gansu-Qinghai Block. Journal of Geodesy and Geodynamics (in Chinese), 2007, 27(1): 24-30.
[1] 刘持恒;李江海;张华添;刘仲兰;范庆凯. 西南印度洋岩浆补给特征研究:来自洋壳厚度的证据[J]. 地球物理学报, 2018, 61(7): 2859-2870.
[2] 李午阳;张健;唐显春;天骄;王迎春;郭琦. 川西高温水热活动区深部热结构的地球物理分析[J]. 地球物理学报, 2018, 61(7): 2926-2936.
[3] 孙云强;罗纲. 青藏高原东北缘地震时空迁移的有限元数值模拟[J]. 地球物理学报, 2018, 61(6): 2246-2264.
[4] 王振宇;佘雅文;付广裕;皮誉洋. 东北亚地区地壳密度结构与垂向构造应力场[J]. 地球物理学报, 2018, 61(6): 2280-2291.
[5] 王健;张广伟;李春峰;梁姗姗. 青藏高原东缘地震活动与居里点深度之间的相关性[J]. 地球物理学报, 2018, 61(5): 1840-1852.
[6] 董兴朋;滕吉文. 青藏高原东北缘远震P波走时层析成像研究[J]. 地球物理学报, 2018, 61(5): 2066-2074.
[7] 李敏娟;沈旭章;张元生;刘旭宙;梅秀苹. 基于密集台阵的青藏高原东北缘地壳精细结构及九寨沟地震震源区结构特征分析[J]. 地球物理学报, 2018, 61(5): 2075-2087.
[8] 郑晨;丁志峰;宋晓东. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构[J]. 地球物理学报, 2018, 61(4): 1211-1224.
[9] 刘金瑞;任治坤;张会平;李传友;张竹琪;郑文俊;李雪梅;刘彩彩. 海原断裂带老虎山段晚第四纪滑动速率精确厘定与讨论[J]. 地球物理学报, 2018, 61(4): 1281-1297.
[10] 郭晓玉;高锐;高建荣;徐啸;黄兴富. 青藏高原东北缘马衔山断裂带构造属性的综合研究[J]. 地球物理学报, 2018, 61(2): 560-569.
[11] 白一鸣;艾印双;姜明明;何玉梅;陈棋福. 利用P波接收函数研究青藏高原东南缘地幔转换带结构[J]. 地球物理学报, 2018, 61(2): 570-583.
[12] 郭希;陈赟;李士东;邓阳凡;徐涛;李玮;谭萍. 峨眉山大火成岩省地壳横波速度结构特征及其动力学意义[J]. 地球物理学报, 2017, 60(9): 3338-3351.
[13] 于传海;赵俊峰;施小斌;杨小秋;任自强;陈梅. 南海重力异常的沉积层密度改正及其对区域构造特征分析的意义[J]. 地球物理学报, 2017, 60(8): 3151-3166.
[14] 杨婷;陈秀万;万玮;黄照强;杨振宇;姜璐璐. 基于光学与被动微波遥感的青藏高原地区土壤水分反演[J]. 地球物理学报, 2017, 60(7): 2556-2567.
[15] 吴招才;高金耀;丁巍伟;沈中延;张涛;杨春国. 南海海盆三维重力约束反演莫霍面深度及其特征[J]. 地球物理学报, 2017, 60(7): 2599-2613.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!