地球物理学报 ›› 2019, Vol. 34 ›› Issue (5): 1714–1720.doi: 10.6038/pg2019CC0281

• 固体地球物理及空间物理学(大气、行星、地球动力学、重磁电及地震学、地热学) • 上一篇    下一篇

南北地震带潮汐触发地震的统计学证据

陈全1, 2, 安张辉1, 2, *, 范莹莹1, 2   

  1. 1. 中国地震局兰州地震研究所,兰州 730000;
    2. 甘肃省地震局,兰州 730000
  • 收稿日期:2018-11-26 修回日期:2019-05-13 发布日期:2019-10-25
  • 通讯作者: 安张辉,男,1978年生,副研究员,主要从事地震电磁学理论方向研究.(E-mail:anzhanghui5@hotmail.com)
  • 作者简介:陈全,男,1994年生,在读硕士,主要从事地震电磁学方面的研究.(E-mail:1195241621@qq.com)
  • 基金资助:
    中国地震局地震科技星火计划(XH16037)和甘肃省科技计划资助(17JR5RA338)共同资助.

Statistical evidence of tidal triggered earthquakes in north and south seismic belt

CHEN Quan1, 2, AN Zhang-hui1, 2, *, FAN Ying-ying1, 2   

  1. 1. Lanzhou Institute of Seismology, CEA, Gansu, Lanzhou 730000, China;
    2. Earthquake Administration of Gansu Province, Gansu, Lanzhou 730000, China
  • Received:2018-11-26 Revised:2019-05-13 Published:2019-10-25

摘要: 自19世纪90年代以来,潮汐是否会触发地震这个问题一直备受关注.本研究选用1970年1月1日至2017年5月31日期间南北地震带(20°N—40°N,97°E—105°E)ML≥2.0地震目录资料,通过测量南北地震带地区地震事件与潮汐的相关性来研究潮汐是否能触发地震.选用完备性检测、G-C法、 R/S 分析方法对原始地震目录进行预处理,分别构成未去除余震和去除余震每日地震数量时间序列,利用经验模态分解和快速傅里叶方法,对比分析了潮汐与每日地震数量构成的时间序列频谱特征.结果表明,在本文研究区域,两种每日地震数量时间序列均与潮汐的月潮周期、半月潮周期存在相关性,并且去除余震后的每日地震时间序列的优势频率更加集中,表现的相关性更好.此外,Schuster's测试结果也进一步证明,研究区域地震活动性与固体潮汐存在显著统计相关性.

关键词: 经验模态分解, 潮汐, 地震

Abstract: The question of whether tides trigger earthquakes has been a concern since the 1890s. In this study, 20 °N—40 °N, 97 °E—105 °E) ML≥2.0 earthquake catalogue data of the north-south seismic belt from January 1,1970 to May 31,2017 are selected to study whether the tide can trigger an earthquake by measuring the correlation between the seismic events and the tide in the north-south seismic belt. The complete seismicity detection, GC method, and R/S analysis method were used to preprocess the original earthquake catalog, which constitute the time series of daily earthquakes without the removal of aftershocks and the removal of aftershocks, respectively. Using empirical mode decomposition and fast Fourier methods, the spectral characteristics of time series composed of tide and daily earthquake are compared and analyzed. The results show that in the study area of this paper, the two kinds of daily earthquake time series are correlated with fortnightly tide and lunar tide of the tide, and the dominant frequency of the daily earthquake time series after removing aftershocks is more concentrated. Its performance is more relevant. In addition, the results of Schuster's test further prove that there is a significant statistical correlation between the regional seismicity and the solid tide.

Key words: Empirical mode decomposition, Tidal, Earthquake

中图分类号: 

  • P315
1 Cadicheanu N, Ruymbeke M, Zhu P.2007. Tidal triggering evidence of intermediate depth earthquakes in the vrancea zone (romania)[J]. Natural Hazards & Earth System Sciences, 7(6): 733-740.
2 Chen H J.2010. Using empirical mode decomposition method (EMD) to explore tidal effect on seismic activity(in Chinese)[Thesis]. Taiwan, National Central University.
3 Chen H J, Chen C C, Tseng C Y, et al.2012. Effect of tidal triggering on seismicity in Taiwan revealed by the empirical mode decomposition method[J]. Natural Hazards and Earth System Sciences, 12(7): 2193.
4 Chen L, Liu J, Chen Y, et al.1998. Afiershock deletion in seismicity analysis[J]. Chinese Journal of Geophysics (in Chinese), 41(S1): 244-252.
5 Console R, Gasparini C, De Simoni B, et al.1979. Preambolo al Catalogo Sismico Nazionale (CSN). I criteri di informazione del Catalogo Sismico Nazionale (CSN)[J]. Annals of Geophysics, 32(1): 37-77.
6 Contadakis M E, Arabelos D N, Spatalas S D.2012. Evidence for tidal triggering for the earthquakes of the Ionian geological zone, Greece[J]. Annals of Geophysics, 55(1).
7 Emter D.1997. Tidal triggering of earthquakes and volcanic events[M]. In Tidal phenomena, 293-309.
8 Enescu D, Enescu B D.1999. Possible cause-effect relationships between Vrancea(Romania)earthquakes and some global geophysical phenomena[J]. Natural Hazards, 19(2-3): 233-245.
9 Gao X M, Yin Z S, Wang W Z, et al.1981. Triggering of Earthquakes by the Tidal Stress Tensor[J]. Acta Seismologica Sinica (in Chinese), 3(3): 264-275.
10 Han Y B, Li Z A, Tian J.1996. The Researching of the relation of occurence time of earthquakes and the solar-lunar tidal force in some areas of China[J]. Progress in Geophys (in Chinese), 11(2): 114-122.
11 Heaton T H.1982. Tidal triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 72(6A): 2181-2200.
12 Huang, N E, Shen Z, Long S R, et al.1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 454(1971): 903-995.
13 Huo Z Z.2006. Development of the gravity data processing system (in Chinese)[Master’s thesis]. Xi’an: Department of Geophysics, Chang’an University.
14 Hurst H E.1951. Long term storage capacity of reservoirs[J]. ASCE Transactions, 116(1): 770-799.
15 Knopoff L.1964. Earth tides as a triggering mechanism for earthquakes[J]. Bulletin of the Seismological Society of America, 54(6A): 1865-1870.
16 Lambert A, Kao H, Rogers G, et al.2009. Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone[J]. Journal of Geophysical Research: Solid Earth, 114(B8).
17 Li Z A, Chen L, Han Y B, et al.1994. Lunar-solar Tidal triggering of erthquakes[J]. Journal of Beijing Normal University (Natural Science) (in Chinese), 30(3): 368-372.
18 Lin C H, Yeh Y H, Chen Y I, et al.2003. Earthquake clustering relative to lunar phases in Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 14(3): 1-10.
19 Lloyd E H, Hurst H E, Black R P, et al.1966. Long-term storage: an experimental study[J]. Journal of the Royal Statistical Society, 129(4): 591.
20 Métivier L, De Viron O, Conrad C P, et al.2009. Evidence of earthquake triggering by the solid earth tides[J]. Earth and Planetary Science Letters, 278(3-4): 370-375.
21 Rydelek P A, Davis P M, Koyanagi R Y.1988. Tidal triggering of earthquake swarms at Kilauea volcano, Hawaii[J]. Journal of Geophysical Research: Solid Earth, 93(B5): 4401-4411.
22 Scholz C H.1990. Earthquakes as chaos[J]. Nature, 348(6298): 197-198.
23 Schuster A.1897. On lunar and solar periodicities of earthquakes[J]. Proceedings of the Royal Society of London, 61(369-377): 455-465.
24 Shudde R H, Barr D R.1977. An analysis of earthquake frequency data[J]. Bulletin of the Seismological Society of America, 67(5): 1379-1386.
25 Simpson J F.1967. Earth tides as a triggering mechanism for earthquakes[J]. Earth and Planetary Science Letters, 2(5): 473-478.
26 Stavinschi M, Souchay J.2003. Some correlations between earthquakes and earth tides[J]. Acta Geodaetica et Geophysica Hungarica, 38(1): 77-92.
27 Sun C Q, Yan C H, Wu X P, et al.2014. The effect of tidal triggering on seismic fault in eastern Tibetan plateau and its neighboring areas[J]. Chinese Journal of Geophysics (in Chinese), 57(7): 2054-2064, doi: 10.6038/cjg20140703.
28 Tanaka S.2010. Tidal triggering of earthquakes precursory to the recent Sumatra megathrust earthquakes of 26 December 2004 (MW 9.0), 28 March 2005 (MW 8.6), and 12 September 2007 (MW 8.5)[J]. Geophysical Research Letters, 37(2).
29 Tanaka S, Ohtake M, Sato H.2002. Evidence for tidal triggering of earthquakes as revealed from statistical analysis of global data[J]. Journal of Geophysical Research: Solid Earth, 107(B10): 1-11.
30 Vidale J E, Agnew D C, Johnston M J S, et al.1998. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 24567-24572.
31 Wang X L, Hu B Q, Xia J.2002. R/S analysis method of trend and aberrance point on hydrological time series[J]. Engineering Journal of Wuhan University (in Chinese), 35(2): 10-12.
32 Wu H H.2014. A Study on Long Memory Characteristics of RMB Exchange Rate Return and Return Volatility[J]. Journal of Guangxi University of Finance And Economics (in Chinese), 27(6): 66-70.
33 Wu X P, Huang Y, Mao W, et al.2005. Tidal stress triggering mechanism of earthquakes in Yunnan and related patterns of celestial body positions[J]. Chinese Journal of Geophysics (in Chinese), 48(3): 574-583, doi: 10.3321/j.issn:0001-5733.2005.03.015.
34 Wu X P, Mao W, Huang Y, et al.2009. Tidal stress triggering effect and related astronomical characteristics of Chinese earthquakes based on different tectonic divisions[J]. SCIENCE CHINA Physics, Mechanics & Astronomy (in Chinese), (6): 901-912.
35 Xie C D, Lei X L, Wu X P, et al.2015. Effect of tidal stress on fault nucleation and failure of the 2007 MS 6.4 Ning’er earthquake[J]. Science China: Earth Sciences (in Chinese), 45(9): 1409-1420.
36 Xie C, Lei X, Zhao X, et al.2017. Tidal triggering of earthquakes in the Ning’er area of Yunnan Province, China[J]. Journal of Asian Earth Sciences, 138: 477-483.
37 Zhang J, Xi Q W, Yang L Z, et al.2007. A study on tidal force stress triggering of strong earthquakes[J]. Chinese Journal of Geophysics (in Chinese), 50(2): 448-454, doi: 10.3321/j.issn:0001-5733.2007.02.016.
38 陈宏嘉. 2010. 利用经验模态分解法(EMD)探讨潮汐效应对地震活动的影响[D]. 台湾: 国立中央大学.
39 陈凌, 刘杰, 陈颙, 等. 1998. 地震活动性分析中余震的删除[J]. 地球物理学报, 41(S1): 244-252.
40 高锡铭, 殷志山, 王威中, 等. 1981. 固体潮应力张量对地震的触发作用[J]. 地震学报, 3(3): 264-275.
41 韩延本, 李志安, 田静. 1996. 日月引潮力变化与某些地区地震发生时间的相关研究[J]. 地球物理学进展, 11(2): 114-122.
42 霍志周. 2006. 重力资料预处理系统研制[硕士论文]. 西安: 长安大学地球物理系.
43 李志安, 陈黎, 韩延本, 等. 1994. 触发地震的日月引潮力[J]. 北京师范大学学报:自然科学版, 30(3): 368-372.
44 孙长青, 阎春恒, 吴小平, 等. 2014. 青藏高原东部及邻区地震断层面上的潮汐应力触发效应[J]. 地球物理学报, 57(7): 2054-2064, doi: 10.6038/cjg20140703.
45 王孝礼, 胡宝清, 夏军. 2002. 水文时序趋势与变异点的R/S分析法[J]. 武汉大学学报: 工学版, 35(2): 10-12.
46 吴慧慧. 2014. 人民币汇率收益率及收益波动率长记忆性特征研究[J]. 广西财经学院学报, 27(6): 66-70.
47 吴小平, 黄雍, 冒蔚, 等. 2005. 云南地震的潮汐应力触发机制及相关天体位置图像[J]. 地球物理学报, 48(3): 574-583, doi: 10.3321/j.issn:0001-5733.2005.03.015.
48 吴小平, 冒蔚, 黄雍, 等. 2009. 基于不同构造分区中国地震的潮汐应力触发效应及相关天文特征[J]. 中国科学: G辑, (6): 901-912.
49 解朝娣, LEI XingLin, 吴小平, 等. 2015. 潮汐应力对2007年MS 6.4宁洱地震震源断层成核失稳过程的影响[J]. 中国科学:地球科学, 45(9): 1409-1420.
50 张晶, 郗钦文, 杨林章, 等. 2007. 引潮力与潮汐应力对强震触发的研究[J]. 地球物理学报, 50(2): 448-454, doi: 10.3321/j.issn:0001-5733.2007.02.016.
51 中国人民共和国地质矿产部. 1997. 中华人民共和国地质矿产行业标准-大比例尺重力勘探规范(DZ/T0171-1997)[S]. 北京: 中国标准出版社.
[1] 左可桢;陈继锋. 门源地区地壳三维体波速度结构及地震重定位研究[J]. 地球物理学报, 2018, 61(7): 2788-2801.
[2] 金震;李山有;蔡辉腾;李培;李海艳;徐嘉隽. 利用气枪地震资料对福建及台湾海峡南部地壳三维P波速度结构研究[J]. 地球物理学报, 2018, 61(7): 2776-2787.
[3] 龙锋;蒋长胜;祁玉萍;刘自凤;傅莺. 联合概率法在合并相邻台网地震目录中的应用:以2014年鲁甸序列为例[J]. 地球物理学报, 2018, 61(7): 2815-2827.
[4] 曹筠;冉勇康;许汉刚;李彦宝;马兴全;梁明剑;李西;张鹏;李丽梅. 郯庐断裂带江苏段安丘-莒县断裂全新世活动及其构造意义[J]. 地球物理学报, 2018, 61(7): 2828-2844.
[5] 高金尉;吴时国;姚永坚;陈传绪;宋陶然;王吉亮;孙金;张汉羽;马本俊;谢杨冰. 马尼拉俯冲带北段增生楔前缘构造变形和精细结构[J]. 地球物理学报, 2018, 61(7): 2845-2858.
[6] 黄晞桐;宋海斌;关永贤;耿明会;王亚龙. 基于流体动力学数值模拟的海水层反射地震研究[J]. 地球物理学报, 2018, 61(7): 2892-2904.
[7] 李午阳;张健;唐显春;天骄;王迎春;郭琦. 川西高温水热活动区深部热结构的地球物理分析[J]. 地球物理学报, 2018, 61(7): 2926-2936.
[8] 汪金菊;李青;徐小红;曹丽. 基于分数阶小波域GSM模型的地震信号随机噪声压制方法[J]. 地球物理学报, 2018, 61(7): 2989-2997.
[9] 胡亚轩;郝明;秦姗兰;季灵运;宋尚武. 海南岛现今三维地壳运动与断裂活动性研究[J]. 地球物理学报, 2018, 61(6): 2310-2321.
[10] 孙云强;罗纲. 青藏高原东北缘地震时空迁移的有限元数值模拟[J]. 地球物理学报, 2018, 61(6): 2246-2264.
[11] 赵博;高原;梁建宏;刘杰. 应用地震干涉法定位四川九寨沟7.0级地震震源位置[J]. 地球物理学报, 2018, 61(6): 2292-2300.
[12] 温少妍;单新建;张国宏;张迎峰;屈春燕;赵德政;李彦川. 基于InSAR和远场地震波联合反演2008年MW6.3大柴旦地震震源破裂过程[J]. 地球物理学报, 2018, 61(6): 2301-2309.
[13] 尹昕忠;周本刚;陈九辉;韦伟;谢超;郭志. 西藏米林M6.9地震早期余震时空分布特征[J]. 地球物理学报, 2018, 61(6): 2322-2331.
[14] 姚琪;徐锡伟;邢会林;程佳;江国焰;马未宇;刘杰;杨文. 2015年尼泊尔地震三维发震构造及地震危险性研究[J]. 地球物理学报, 2018, 61(6): 2332-2343.
[15] 李昌珑;吴健;徐伟进;高孟潭. 基于断层活动资料的鄂尔多斯块体周缘未来30年大地震危险性研究[J]. 地球物理学报, 2018, 61(6): 2344-2357.
浏览
全文


摘要

被引

  分享   
  讨论   
No Suggested Reading articles found!