地球物理学进展 ›› 2019, Vol. 34 ›› Issue (5): 1878-1886.doi: 10.6038/pg2019CC0240
• 应用地球物理学Ⅰ(油气及金属矿产地球物理勘探) • 上一篇 下一篇
毛庆辉1,2,王鹏1,曾隽3
收稿日期:
2018-11-17
修回日期:
2019-05-28
出版日期:
2019-10-28
发布日期:
2019-10-28
作者简介:
毛庆辉,男,1987年生,湖北荆州人,博士,讲师,从事水力压裂微震资料反演、地震资料储层预测方向研究工作.(E-mail: maoqinghuijz@126.com)
基金资助:
MAO Qing-hui1,2,WANG Peng1,ZENG Jun3
Received:
2018-11-17
Revised:
2019-05-28
Online:
2019-10-28
Published:
2019-10-28
摘要:
随着国内外页岩气勘探开发的不断深入,水力压裂微地震监测技术重要性越来越大,而该技术的核心是微地震事件定位.近些年前人对微地震事件的定位方法做了比较深入的研究,形成了众多定位方法.为此,依据目标函数构造及其求解方式对微地震事件定位方法进行了分类,主要介绍了两大类具有代表性的微地震事件定位方法:(1)基于走时的射线追踪定位方法;(2)基于波形的偏移定位方法.然后对其算法思路流程、优缺点等方面进行了归纳总结,分析了各类算法的研究现状及两种典型算法的应用实例,最后对微地震事件定位方法的发展趋势进行了展望.
中图分类号:
毛庆辉, 王鹏, 曾隽. 2019. 水力压裂微地震事件定位方法综述. 地球物理学进展, 34(5): 1878-1886. doi: 10.6038/pg2019CC0240.
MAO Qing-hui, WANG Peng, ZENG Jun. 2019. Review of hydro-fracturing microseismic event location methods. Progress in Geophysics. 34(5): 1878-1886. doi: 10.6038/pg2019CC0240.
1 | Chang X, Li Z, Wang P , et al. 2018. Micro-seismic location based on frequency attenuation compensation[J]. Chinese Journal of Geophysics (in Chinese), 61(1):250-257, doi: 10.6038/cjg2018L0396. |
2 | Cui R S, Chen Y, Wang H T , et al. 2014. Study on small-Scale microseismic location method based on DFP algorithm[J]. Technology for Earthquake Disaster Prevention (in Chinese), 9(s1):639-647, doi: 10.11899/zzfy2014s110. |
3 | Dai F, Guo L, Xu N W , et al. 2016. Improvement of microseismic location based on an anisotropic velocity model[J]. Chinese Journal of Geophysics (in Chinese), 59(9):3291-3301, doi: 10.6038/cjg20160914. |
4 | Dong R J . 2013. Study on Crosshole microseismic source location method for hydraulic fracturing [Master’s thesis]. Shanxi: Chang’an University(in Chinese). |
5 | Dong S T, Gao H X . 2004. Microseismic monitering technology and its application to oilfield development[J]. Petroleum Instruments (in Chinese), 18(5):5-8. |
6 | Drew J E, Leslie H D, Armstrong P N. 2005. Automated microseismic event detection and location by continuous spatial mapping [C]. Dallas: The SPE Annual Technical Conference and Exhibition, SPE 95513, doi: 10.2118/95513-MS. |
7 | Gajewski D, Anikiev D, Kashtan B, et al. 2007. Localization of Seismic Events by Diffraction Stacking [C]. SEG Technical Program Expanded Abstracts, 26:1287-1291, doi: 10.1190/1.2792738. |
8 | Geiger L . 1912. Probability method for the determination of earthquake epicenters from the arrival time only[J]. Bulletin of St.Louis University, 8(1):56-71. |
9 | Grigoli F, Cesca S, Krieger L , et al. 2016. Automated microseismic event location using Master-Event Waveform Stacking[J]. Sci. Rep., 6:1-13, doi: 10.1038/srep25744. |
10 |
Haldorsen J B U, Brooks N J, Milenkovic M . 2013. Locating microseismic sources using migration-based deconvolution[J]. Geophysics, 78(5): KS73-KS84, doi: 10.1190/GEO2013-0086.1.
doi: 10.1190/GEO2013-0086.1 |
11 | Jupe A, Cowles J, Jones R . 1998. Microseismic monitoring:listen and see the reservoir[J]. World Oil, 219(12):171-174. |
12 | Kao H, Shan S J . 2004. The Source-Scanning Algorithm:mapping the distribution of seismic sources in time and space[J]. Geophysical Journal International, 157(2):589-594, doi: 10.1111/j.1365-246X.2004.02276.x. |
13 | Lagos S R, Velis D R . 2018. Microseismic event location using global optimization algorithms: an integrated and automated workflow[J]. Journal of Applied Geophysics, 149:18-24, doi: 10.1016/j.jappgeo.2017.12.004. |
14 | Li G M, Chen J Y, Han M, et al. 2012. Accurate microseismic event location inversion using a gradient-based method [C]. Texas: The SPE Annual Technical Conference and Exhibition, SPE 159187, doi: 10.2118/159187-MS. |
15 | Li J, Wu D, Han Y . 2016. A PSO microseismic localization method based on group waves’ time difference information[J]. Journal of Measurement Science and Instrumentation (in Chinese), 7(3):241-246, doi: 10.3969/j.issn.1674-8042.2016.03.006. |
16 |
Li J L, Zhang H J, Rodi W L , et al. 2013. Joint microseismic location and anisotropic tomography using differential arrival times and differential backazimuths[J]. Geophysical Journal International, 195(3):1917-1931, doi: 10.1093/gji/ggt358.
doi: 10.1093/gji/ggt358 |
17 |
Li L, Chen H, Wang X M . 2015. Weighted-elastic-wave interferometric imaging of microseismic source location[J]. Applied Geophysics, 12(2):221-234, doi: 10.1007/s11770-015-0479-z.
doi: 10.1007/s11770-015-0479-z |
18 | Li L L, He C, Tan Y Y . 2017. Study of recording system and objective function for microseismic source location[J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 53(2):329-343, doi: 10.13209/j.0479-8023.2016.091. |
19 | Li M, Tao G, Wang H , et al. 2016. Parametric optimization on locating microseismic events with reverse time imaging[J]. Journal of China University of Petroleum(Edition of Natural Science) (in Chinese), 40(5):59-71, doi: 10.3969/j.issn.1673-5005.2016.05.007. |
20 |
Li N, Wang E Y, Ge M C , et al. 2014. A nonlinear microseismic source location method based on Simplex method and its residual analysis[J]. Arabian Journal of Geosciences, 7(11):4477-4486, doi: 10.1007/s12517-013-1121-0.
doi: 10.1007/s12517-013-1121-0 |
21 | Li Z C, Sheng G Q, Wang W B , et al. 2014. Time-reverse microseismic hypocenter location with interferometric imaging condition based on surface and downhole multi-components[J]. Oil Geophysical Prospecting (in Chinese), 49(4):661-666, doi: 10.13810/j.cnki.issn.1000-7210.2014.04.006. |
22 | Li Z H, Baan M V D . 2016. Microseismic event localization by acoustic time reversal extrapolation[J]. Geophysics, 81(3):KS123-KS134, doi: 10.1190/GEO2015-0300.1. |
23 | Liang B, Zhu G S. 2004. Microseismic monitoring methods of exploration and development in oil and gas field [M]. Beijing: Petroleum Industry Press. |
24 | Liang C T, Yu Y Y, Yang Y H , et al. 2016. Joint inversion of source location and focal mechanism of microseismicity[J]. Geophysics, 81(2):KS41-KS49, doi: 10.1190/GEO2015-0272.1. |
25 | Liu B H, Qin X Y, Zheng S L , et al. 2005. Microseismic monitoring and its applications in oilfield operations[J]. Progress in Exploration Geophysics (in Chinese), 28(5):325-329. |
26 | Lü J G, Jiang Y D, Zhao Y X , et al. 2013. Study of microseismic positioning based on steady simulated annealing-simplex hybrid algorithm[J]. Rock and Soil Mechanics (in Chinese), 34(8):2195-2203. |
27 | Mao Q H . 2013. Research of microseismic source inversion methods in hydro-fracturing [Master’s thesis]. Hubei: Yangtze University (in Chinese). |
28 | Mao Q H, Chen C R, Gui Z X , et al. 2012. Research on velocity model in hydro-fracturing microseismic monitoring[J]. Chinese Journal of Engineering Geophysics (in Chinese), 9(6):708-711, doi: 10.3969/j.issn.1672-7940.2012.06.012. |
29 | Mao Q H, Wang Y C, Wang P , et al. 2015. The improved microseismic event relocation method and its application[J]. Geophysical Prospecting for Petroleum (in Chinese), 54(3):359-366, doi: 10.3969/j.issn.1000-1441.2015.03.016. |
30 | Nakata N, Beroza G C . 2016. Reverse time migration for microseismic sources using the geometric mean as an imaging condition[J]. Geophysics, 81(2):KS51-KS60, doi: 10.1190/GEO2015-0278.1. |
31 | Pei D H, Quirein J A, Cornish B E , et al. 2009. Velocity calibration for microseismic monitoring:a very fast simulated annealing (VFSA) approach for joint-objective optimization[J]. Geophysics, 74(6):WCB47-WCB55, doi: 10.1190/1.3238365. |
32 | Rentsch S, Buske S, Lüth S , et al. 2007. Fast location of seismicity:A migration-type approach with application to hydraulic-fracturing data[J]. Geophysics, 72(1):S33-S40, doi: 10.1190/1.2401139. |
33 | Sheng G Q, Li Z C, Wang W B , et al. 2014. A source location method for microseismic monitoring based on particle swarm optimization combined with differential evolution algorithm[J]. Acta Petrolei Sinica(in Chinese), 35(6):1172-1181,doi: 10.7623/syxb201406015. |
34 | Song W Q, Chen Z D, Mao Z H. 2008 a. Hydro-fracturing break microseismic monitoring technology [M]. Shandong: China University of Petroleum Press. |
35 | Song W Q, Feng C . 2013 b. Automatic identification and localization of micro seismic effective events[J]. Oil Geophysical Prospecting (in Chinese), 48(2):283-288. |
36 | Song W Q, Gao Y K, Zhu H W . 2013 c. The differential evolution inversion method based on Bayesian theory for micro-seismic data[J]. Chinese Journal of Geophysics (in Chinese), 56(4):1331-1339, doi: 10.6038/cjg20130427. |
37 | Song W Q, Liu J, Chen W . 2008 b. Microearthquake source inversion of an improved ray tracing algorithm[J]. Geophysical and Geochemical Exploration (in Chinese), 32(3):274-278. |
38 | Song W Q, Yang X D . 2011. A joint inversion combining the grid-search algorithm and the genetic algorithm under solution-domain constraints for microseismic events[J]. Oil Geophysical Prospecting (in Chinese), 46(2):259-266. |
39 | Song W Q, Zhu H W, Jiang Y D , et al. 2013 a. Bayesian inversion method for surface monitoring microseismic data[J]. Geophysical Prospecting for Petroleum (in Chinese), 52(1):11-16, doi: 10.3969/j.issn.1000-1441.2013.01.002. |
40 | Sun H L, Qin Y S, Bai T Z , et al. 2017. Research on joint microseismic monitoring of surface and borehole using amplitude stacking[J]. Global Geology (in Chinese), 36(3):931-940, doi: 10.3969/j.issn.1004-5589.2017.03.026. |
41 | Tan Y Y, Li L L, Zhang X , et al. 2017. An improved method for microseismic source location based on grid search[J]. Chinese Journal of Geophysics (in Chinese), 60(1):293-304, doi: 10.6038/cjg20170124. |
42 | Tian X, Zhang W, Zhang J . 2016. Cross double-difference inversion for microseismic event location using data from a single monitoring well[J]. Geophysics, 81(5):KS183-KS194, doi: 10.1190/geo2016-0198.1. |
43 | Trojanowski J, Eisner L . 2017. Comparison of migration-based location and detection methods for microseismic events[J]. Geophysical Prospecting, 65(1):47-63, doi: 10.3997/2214-4609.201413019. |
44 | Wang C L, Cheng J B, Yin C , et al. 2013. Microseismic events location of surface and borehole observation with reverse-time focusing using interferometry technique[J]. Chinese Journal of Geophysics (in Chinese), 56(9):3184-3196, doi: 10.6038/cjg20130931. |
45 | Wang L C, Chang X, Wang Y B . 2016. Locating micro-seismic events based on interferometric traveltime inversion[J]. Chinese Journal of Geophysics (in Chinese), 59(8):3037-3045, doi: 10.6038/cjg20160826. |
46 | Wang L F . 2012. Research on positioning technology of fracturing microseismic source place of oil well based on the genetic algorithm [Master’s thesis]. Jilin: Jilin University (in Chinese). |
47 | Wang Q D, Li G H, Wu W J , et al. 2015. Application of multiple-population genetic algorithm in micro-seismic source location[J]. Computer Measurement and Control (in Chinese), 23(4):1285-1288, doi: 10.16526/j.cnki.11-4762/tp.2015.04.002. |
48 | Wong J, Han L J, Bancroft J C. 2010. Microseismic hypocenter location using nonlinear optimization [C]. SEG Technical Program Expanded Abstracts, 29:2186-2190, doi: 10.1190/1.3513280. |
49 | Wu J G, Zhang P, Lv H , et al. 2017. Application of microseismic event location using amplitude summation in surface monitoring[J]. Journal of Jilin University(Earth Science Edition) (in Chinese), 47(1):255-264, doi: 10.13278/j.cnki.jjuese.201701305. |
50 | Wu S J, Wang Y B, Zheng Y K , et al. 2018. Microseismic source locations with deconvolution migration[J]. Geophysical Journal International, 212(3):2088-2115, doi: 10.1093/gji/ggx518. |
51 | Xue Q F, Wang Y B, Chang X . 2016. Fast 3D elastic micro-seismic source location using new GPU features[J]. Physics of the Earth and Planetary Interiors, 261:24-35, doi: 10.1016/j.pepi.2016.08.001. |
52 | Xue Q F, Wang Y B, Chang X . 2018. Joint Inversion of Location, Excitation Time, and Amplitude of Microseismic Sources[J]. Bulletin of the Seismological Society of America, 108(3A):1071-1079, doi: 10.1785/0120170240. |
53 | Yao Y. 2002. Basic theory and application method of geophysical inversion [M]. Wuhan: China University of Geosciences Press. |
54 | Yin C, Liu H, Li Y L , et al. 2013. The precision analysis of the microseismic location[J]. Progress in Geophysics (in Chinese), 28(2):800-807, doi: 10.6038/pg20130229. |
55 | Yu M . 2013. Research on micro-seismic inversion based on BP-GA mixture algorithm [Master’s thesis]. Jilin: Jilin University (in Chinese). |
56 | Yu Y Y, Liang C T, Wu F R , et al. 2018. On the accuracy and efficiency of the joint source scanning algorithm for hydraulic fracturing monitoring[J]. Geophysics, 83(5):KS77-KS85, doi: 10.1190/GEO2017-0473.1. |
57 | Zhang H L, Zhu G M, Wang B L . 2015. Study and application of objective function in microseismic source location[J]. Coal Geology and Exploration (in Chinese), 43(6):105-108, doi: 10.3969/j.issn.1001-1986.2015.06.022. |
58 | Zhang S, Liu Q L, Zhao Q , et al. 2002. Application of microseismic monitoring technology in development of oil field[J]. Geophysical Prospecting for Petroleum (in Chinese), 41(2):226-231. |
59 | Zhang Y S, Gao Y T, Wang Z , et al. 2016. Microseism positioning based on an SA-PSO hybrid algorithm[J]. Modern Tunnelling Technology (in Chinese), 53(3):137-145, doi: 10.13807/j.cnki.mtt.2016.03.020. |
60 | Zheng Y K, Wang Y B, Chang X . 2016. Wave equation based microseismic source location and velocity inversion[J]. Physics of the Earth and Planetary Interiors, 261:46-53, doi: 10.1016/j.pepi.2016.07.003. |
61 | Zhou H, Zhang W, Zhang J . 2016. Downhole microseismic monitoring for low signal-to-noise ratio events[J]. Journal of Geophysics and Engineering, 13(5):805-816, doi: 10.1088/1742-2132/13/5/805. |
62 | Zhou W, Wang L S, Guan L P , et al. 2015. Microseismic event location using an inverse method of joint P-S phase arrival difference and P-wave arrival difference in a borehole system[J]. Journal of Geophysics and Engineering, 12(2):220-226, doi: 10.1088/1742-2132/12/2/220. |
63 | Zhou Y B . 2012. Microseismic monitoring inversion method study [Master’s thesis]. Hubei: Yangtze University (in Chinese). |
64 |
Zimmer U . 2011. Microseismic design studies[J]. Geophysics, 76(6):WC17-WC25, doi: 10.1190/geo2011-0004.1.
doi: 10.1190/GEO2011-0004.1 |
65 | 常旭, 李政, 王鹏 , 等. 2018. 基于频率衰减补偿的微地震定位方法[J]. 地球物理学报, 61(1):250-257, doi: 10.6038/cjg2018L0396. |
66 | 崔仁胜, 陈阳, 王洪体 , 等. 2014. 基于DFP算法的小尺度微震定位方法研究[J]. 震灾防御技术, 9(s1):639-647, doi: 10.11899/zzfy2014s110. |
67 | 戴峰, 郭亮, 徐奴文 , 等. 2016. 基于异向波速模型的微震定位改进[J]. 地球物理学报, 59(9):3291-3301, doi: 10.6038/cjg20160914. |
68 | 董蕊静 . 2013. 水力压裂井间微地震震源定位方法研究[硕士论文]. 陕西: 长安大学. |
69 | 董世泰, 高红霞 . 2004. 微地震监测技术及其在油田开发中的应用[J]. 石油仪器, 18(5):5-8. |
70 | 李剑, 武丹, 韩焱 . 2016. 一种基于群波时间差信息的PSO微震定位方法[J]. 测试科学与仪器, 7(3):241-246, doi: 10.3969/j.issn.1674-8042.2016.03.006. |
71 | 李罗兰, 何川, 谭玉阳 . 2017. 微地震观测系统及震源定位目标函数研究[J]. 北京大学学报(自然科学版), 53(2):329-343, doi: 10.13209/j.0479-8023.2016.091. |
72 | 李萌, 陶果, 王华 , 等. 2016. 微地震逆时聚焦定位算法的模拟实验研究[J]. 中国石油大学学报(自然科学版), 40(5):59-71, doi: 10.3969/j.issn.1673-5005.2016.05.007. |
73 | 李振春, 盛冠群, 王维波 , 等. 2014. 井地联合观测多分量微地震逆时干涉定位[J]. 石油地球物理勘探, 49(4):661-666, doi: 10.13810/j.cnki.issn.1000-7210.2014.04.006. |
74 | 梁兵, 朱广生 . 2004. 油气田勘探开发中的微震监测方法[M]. 北京: 石油工业出版社. |
75 | 刘百红, 秦绪英, 郑四连 , 等. 2005. 微地震监测技术及其在油田中的应用现状[J]. 勘探地球物理进展, 28(5):325-329. |
76 | 吕进国, 姜耀东, 赵毅鑫 , 等. 2013. 基于稳健模拟退火-单纯形混合算法的微震定位研究[J]. 岩土力学, 34(8):2195-2203. |
77 | 毛庆辉 . 2013. 水力压裂微震震源反演方法研究[硕士论文]. 湖北: 长江大学. |
78 | 毛庆辉, 陈传仁, 桂志先 , 等. 2012. 水力压裂微震监测中速度模型研究[J]. 工程地球物理学报, 9(6):708-711, doi: 10.3969/j.issn.1672-7940.2012.06.012. |
79 | 毛庆辉, 王彦春, 王鹏 , 等. 2015. 改进的微震事件反演重定位方法及其应用[J]. 石油物探, 54(3):359-366, doi: 10.3969/j.issn.1000-1441.2015.03.016. |
80 | 盛冠群, 李振春, 王维波 , 等. 2014. 水力压裂微地震粒子群差分进化定位算法[J]. 石油学报, 35(6):1172-1181, doi: 10.7623/syxb201406015. |
81 | 宋维琪, 陈泽东, 毛中华 . 2008 a. 水力压裂裂缝微地震监测技术[M]. 山东: 中国石油大学出版社. |
82 | 宋维琪, 冯超 . 2013 b. 微地震有效事件自动识别与定位方法[J]. 石油地球物理勘探, 48(2):283-288. |
83 |
宋维琪, 高艳珂, 朱海伟 . 2013 c. 微地震资料贝叶斯理论差分进化反演方法[J]. 地球物理学报, 56(4):1331-1339, doi: 10.6038/cjg20130427.
doi: 10.6038/cjg20130427 |
84 | 宋维琪, 刘军, 陈伟 . 2008 b. 改进射线追踪算法的微震源反演[J]. 物探与化探, 32(3):274-278. |
85 | 宋维琪, 杨晓东 . 2011. 解域约束下的微地震事件网格搜索法、遗传算法联合反演[J]. 石油地球物理勘探, 46(2):259-266. |
86 | 宋维琪, 朱海伟, 姜宇东 , 等. 2013 a. 地面微地震资料震源定位的贝叶斯反演方法[J]. 石油物探, 52(1):11-16, doi: 10.3969/j.issn.1000-1441.2013.01.002. |
87 | 孙海林, 秦月霜, 白田增 , 等. 2017. 振幅叠加的井地联合微地震监测技术研究[J]. 世界地质, 36(3):931-940, doi: 10.3969/j.issn.1004-5589.2017.03.026. |
88 | 谭玉阳, 李罗兰, 张鑫 , 等. 2017. 一种改进的基于网格搜索的微地震震源定位方法[J]. 地球物理学报, 60(1):293-304, doi: 10.6038/cjg20170124. |
89 |
王晨龙, 程玖兵, 尹陈 , 等. 2013. 地面与井中观测条件下的微地震干涉逆时定位算法[J]. 地球物理学报, 56(9):3184-3196, doi: 10.6038/cjg20130931.
doi: 10.6038/cjg20130931 |
90 | 王璐琛, 常旭, 王一博 . 2016. 干涉走时微地震震源定位方法[J]. 地球物理学报, 59(8):3037-3045, doi: 10.6038/cjg20160826. |
91 | 王连飞 . 2012. 基于遗传算法的油井压裂微震震源点的定位技术研究[硕士论文]. 吉林: 吉林大学. |
92 | 王泉栋, 李国和, 吴卫江 , 等. 2015. 多种群遗传算法在微震震源定位中的应用[J]. 计算机测量与控制, 23(4):1285-1288, doi: 10.16526/j.cnki.11-4762/tp.2015.04.002. |
93 | 吴建光, 张平, 吕昊 , 等. 2017. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 47(1):255-264, doi: 10.13278/j.cnki.jjuese.201701305. |
94 | 姚姚 . 2002. 地球物理反演基本理论与应用方法[M]. 武汉: 中国地质大学出版社. |
95 | 尹陈, 刘鸿, 李亚林 , 等. 2013. 微地震监测定位精度分析[J]. 地球物理学进展, 28(2):800-807, doi: 10.6038/pg20130229. |
96 | 于淼 . 2013. 基于BP-GA混合算法的微震反演研究[硕士论文]. 吉林: 吉林大学. |
97 | 张唤兰, 朱光明, 王保利 . 2015. 微地震震源定位中目标函数的研究与应用[J]. 煤田地质与勘探, 43(6):105-108, doi: 10.3969/j.issn.1001-1986.2015.06.022. |
98 | 张山, 刘清林, 赵群 , 等. 2002. 微地震监测技术在油田开发中的应用[J]. 石油物探, 41(2):226-231. |
99 | 张院生, 高永涛, 王喆 , 等. 2016. 基于SA-PSO混合算法的微震定位研究[J]. 现代隧道技术, 53(3):137-145, doi: 10.13807/j.cnki.mtt.2016.03.020. |
100 | 周运波 . 2012. 微震监测反演方法研究[硕士论文]. 湖北: 长江大学. |
[1] | 陈润航,黄汉明,施佳朋,薛思敏,袁雪梅. 天然地震与人工爆破地震波形的实时分类研究[J]. 地球物理学进展, 2019, 34(5): 1721-1727. |
[2] | 张云,白超英. 基于MFMM正演和Subspace反演下2D起伏层状介质中多震相走时同时反演成像[J]. 地球物理学进展, 2019, 34(4): 1371-1380. |
[3] | 胡玮. 塔中地区二叠系火成岩地震识别及描述技术研究——以顺北工区为例[J]. 地球物理学进展, 2019, 34(4): 1434-1440. |
[4] | 李冀蜀,李志刚,吴建鲁. 基于反射能量约束全波形反演初始速度场建立研究[J]. 地球物理学进展, 2019, 34(4): 1453-1459. |
[5] | 梁展源,吴国忱,张晓语. 基于频移目标函数的包络反演方法[J]. 地球物理学进展, 2019, 34(4): 1481-1488. |
[6] | 邢贞贞,张盼,韩立国,尹语晨. 基于分段全变分约束的动态混合编码震源全波形反演[J]. 地球物理学进展, 2019, 34(4): 1535-1540. |
[7] | 段南. 叠前地震波形指示反演在薄互储层预测中的应用[J]. 地球物理学进展, 2019, 34(2): 523-528. |
[8] | 刘聪,王者江,闫英伟. 基于伴随状态法二维时间域勒夫波全波形反演研究[J]. 地球物理学进展, 2019, 34(1): 136-143. |
[9] | 崔婵婕,侯卫生,杨翘楚,刘恒光,郑天成. 联合构造导向滤波和包络反演的初始速度建模方法研究[J]. 地球物理学进展, 2018, 33(6): 2318-2323. |
[10] | 罗静蕊,王本锋. 瞬时相位信息用于时域弹性波全波形反演初始模型建立[J]. 地球物理学进展, 2018, 33(6): 2435-2440. |
[11] | 马吉静. 质点的运动与波的形态[J]. 地球物理学进展, 2018, 33(5): 1927-1935. |
[12] | 王川,李振春,李文燕,张凯,王兴军,陈阳阳. 复杂近地表三维初至波走时层析方法研究[J]. 地球物理学进展, 2018, 33(5): 1967-1973. |
[13] | 陈润航,黄汉明,柴慧敏. 地震和爆破事件源波形信号的卷积神经网络分类研究[J]. 地球物理学进展, 2018, 33(4): 1331-1338. |
[14] | 罗静蕊,吴如山. 基于层析滤波的全波形反演方法[J]. 地球物理学进展, 2018, 33(4): 1533-1539. |
[15] | 代春萌,曾庆才,郭晓龙,曾同生,李璇. 三位一体火山岩预测技术的建立及应用——以新僵克拉美丽气田为例[J]. 地球物理学进展, 2018, 33(3): 1035-1042. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||