地震波走时场模拟的快速推进法和快速扫描法比较研究

兰海强, 张智, 徐涛, 白志明, 梁锴. 地震波走时场模拟的快速推进法和快速扫描法比较研究[J]. 地球物理学进展, 2012, 27(5): 1863-1870. doi: 10.6038/j.issn.1004-2903.2012.05.005
引用本文: 兰海强, 张智, 徐涛, 白志明, 梁锴. 地震波走时场模拟的快速推进法和快速扫描法比较研究[J]. 地球物理学进展, 2012, 27(5): 1863-1870. doi: 10.6038/j.issn.1004-2903.2012.05.005
LAN Hai-qiang, ZHANG Zhi, XU Tao, BAI Zhi-ming, LIANG Kai. A comparative study on the fast marching and fast sweeping methods in the calculation of first-arrival traveltime field[J]. Progress in Geophysics, 2012, 27(5): 1863-1870. doi: 10.6038/j.issn.1004-2903.2012.05.005
Citation: LAN Hai-qiang, ZHANG Zhi, XU Tao, BAI Zhi-ming, LIANG Kai. A comparative study on the fast marching and fast sweeping methods in the calculation of first-arrival traveltime field[J]. Progress in Geophysics, 2012, 27(5): 1863-1870. doi: 10.6038/j.issn.1004-2903.2012.05.005

地震波走时场模拟的快速推进法和快速扫描法比较研究

详细信息
    作者简介:

    兰海强,男,中国科学院地质与地球物理研究所博士研究生,主要从事复杂介质中地震波传播的数值模拟与地震资料处理的理论与方法等研究.(E-mail:lanhq@mail.iggcas.ac.cn)

  • 中图分类号: P315

A comparative study on the fast marching and fast sweeping methods in the calculation of first-arrival traveltime field

  • 地震波走时信息在叠前偏移、叠前速度分析、地震层析成像、走时反演及地震定位等中都有重要应用.快速推进法因其理论完善、精确灵活,无条件稳定,近年来已在走时计算领域得到广泛应用.快速扫描法作为求解一阶非线性双曲型偏微分方程的高效方法,已在图像处理、计算机视图、控制论等领域得到有效应用,且在走时计算方面有所应用且展现了广泛的应用前景.本文介绍了两种方法的基本原理且(通过均匀介质模型、局部低速体模型和Marmousi模型)把两种方法做了详细对比.研究结果表明:1)基于逆风差分格式的快速推进法和快速扫描法对纵横向速度变化很大的不均匀介质依然有很好的稳定性和适用性,均可以准确地计算地震波初至走时;2)对于相同的模型和在相同的计算条件下,两种方法的精度相当,但快速扫描法所耗的CPU时间较快速推进法明显减少,效率显著提高.
  • 加载中
  • [1]

    Aki K, Richards P G. Quantitative seismology. 2002: Univ Science Books.

    [2]

    兰海强,刘佳,白志明.VTI介质起伏地表地震波场模拟.地球物理学报,2011,54(8):2072-2084. Lan H Q, Liu J, Bai Z M. Wave-field simulation in VTI media with irregular free surface, Chinese J.Geophys.(in Chinese),2011,54(8):2072-2084.

    [3]

    Hole J. Nonlinear high-resolution three-dimensional seismic travel time tomography. Journal of Geophysical Research, 1992, 97(B5):6553-6562.

    [4]

    Lan H and Zhang Z. Three-Dimensional Wave-Field Simulation in Heterogeneous Transversely Isotropic Medium with Irregular Free Surface. 2011, Bull. Seismol. Soc. Am., 101(3):1354-1370.

    [5]

    Lan H and Zhang Z. Comparative study of free-surface boundary condition in two-dimensional finite-difference elastic wave-field simulation. J. Geophys. Eng., 2011, 8: 275-286.

    [6]

    Zelt C, Smith R. Seismic traveltime inversion for 2-D crustal velocity structure. Geophysical Journal International, 1992, 108(1):16-34.

    [7]

    Lan H, Zhang Z. Seismic wave-field modeling in medium with fluid-filled fractures including surface topography. Applied Geophysics,2012,9(3):301-312.

    [8]

    张中杰,秦义龙,陈赟等. 由宽角反射地震资料重建壳幔反射结构的相似性剖面. 地球物理学报, 2004, 47(003):469-474. Zhang Z J, Qin Y L, Chen Y, et al. Reconstruction of the semblance section for the crust and mantle reflection structure by wide-angle reflection seismic data. Chinese J. Geophys. (in Chinese),2004, 47(3):469-474.

    [9]

    Cerveny V. Seismic ray theory. Cambridge University Press, 2001.

    [10]

    Xu T, Xu G, Gao E, et al. Block modeling and segmentally iterative ray tracing in complex 3D media. Geophysics, 2006, 71:T41-T51.

    [11]

    Xu T, Zhang Z, Gao E, et al. Segmentally Iterative Ray Tracing in Complex 2D and 3D Heterogeneous Block Models. Bulletin of the Seismological Society of America, 100(2): 841-850.

    [12]

    徐涛,徐果明,高尔根,等. 三维复杂介质的块状建模和试射射线追踪. 地球物理学报, 2004, 47(006):1118-1126. Xu T,Xu G M,Gao E G,et a1.Block modeling and shooting ray tracing in complex 3-D media.Chinese J.Geophys.(in Chinese),2004,47(6):1118-1126.

    [13]

    Vidale J. Finite-difference calculation of travel times. Bulletin of the Seismological Society of America, 1988, 78(6):2062.

    [14]

    Vidale J E. Finite-difference calculation of traveltimes in three dimensions. Geophysics, 1990, 55(5):521-526.

    [15]

    Qin F, Luo Y, Olsen K B, et al. Finite-difference solution of the eikonal equation along expanding wavefronts. Geophysics, 1992, 57(3):478-487.

    [16]

    Sethian J A. Fast marching methods. SIAM review, 1999, 41(2):199-235.

    [17]

    Sethian J A, Popovici A M. Three dimensional traveltimes computation using the Fast Marching Method. Geophysics, 1999, 64(2):516-523.

    [18]

    Fomel, S., 1997. A variational formulation of the fast marching eikonal solver, in SEP-95: Stanford Exploration Project, 127-147.

    [19]

    Alkhalifah, T. & Fomel, S., 2001. Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates, Geophys. Prospect., 49, 165-178.

    [20]

    Rawlinson, N. & Sambridge, M., 2004. Multiple reflection and transmission phases in complex layered media using a multistage fast marching method, Geophysics, 69(5), 1338-1350.

    [21]

    Rawlinson, N. & Sambridge, M., 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method, Geophys. J. Int., 156(3), 631-647.

    [22]

    Alton, K. & Mitchell, I.M., 2008. Fast marching methods for stationary Hamilton-Jacobi equations with axis-aligned anisotropy, SIAM J. Numer. Anal, 47, 363-385.

    [23]

    孙章庆,孙建国,韩复兴. 复杂地表条件下快速推进法地震波走时计算. 计算物理, 27(002):281-286. Sun Z Q, Sun J G, Han F X. Traveltime computation using fast marching method under complex topographical conditions. Chinese Journal of Computational Physics, 27(002):281-286.

    [24]

    孙章庆,孙建国,韩复兴,等. 波前快速推进法起伏地表地震波走时计算. 勘探地球物理进展, 2007, 30(005):392-395. Sun Z Q, Sun J G, Han F X, et al. Traveltime computation using fast marching method from rugged topography. PEG,2007, 30(5):392-395.

    [25]

    Zhao H. A fast sweeping method for eikonal equations. Mathematics of computation, 2005, 74(250):603-628.

    [26]

    Zhao H. Parallel implementations of the fast sweeping method. Mathematica Numerica Sinica, 2007, 25(004):421-429.

    [27]

    Qian, J., Zhang, Y. T. & Zhao, H. K. A fast sweeping method for static convex Hamilton-Jacobi equations. J. Comput. Phys., 2007, 31, 237-271.

    [28]

    Qian, J., Zhang, Y. T. & Zhao, H. K. Fast sweeping methods for Eikonal equations on triangular meshes. SIAM J. Numer. Anal., 2007, 45, 83-107.

    [29]

    Lan, H., and Z. Zhang. Topography-dependent eikonal equation and its solver for calculating first-arrival travel times for an irregular surface.Geophysical Journal lnternational,2012,in review.

    [30]

    刘一峰,兰海强. 曲线坐标系程函方程的求解方法研究. 地球物理学报, 2012,55(6):2014-2026. Liu, Y., and H. Lan. Study on the numerical solutions of the eikonal equation in curvilinear coordinate system. Chinese J.Geophys.(in Chinese),2012,55(6):2014-2026.

    [31]

    李辉, 一类 Hamilton-Jacobi方程的Godunov通量和松弛型快速扫描方法. 2008, 长沙:湖南大学. Li Hui. The Godunov Fluxes and a Relaxation-type Fast Sweeping Method for a Class of Hamilton-Jacobi Equations. 2008, Changsha: Hunan University.

  • 加载中
计量
  • 文章访问数:  1101
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2011-11-18
修回日期:  2012-05-20
刊出日期:  2012-10-20

目录