基于平行多裂隙模型美国沙漠峰地热田EGS开发数值模拟研究

翟海珍, 苏正, 凌璐璐, 吴能友. 基于平行多裂隙模型美国沙漠峰地热田EGS开发数值模拟研究[J]. 地球物理学进展, 2017, 32(2): 546-552. doi: 10.6038/pg20170213
引用本文: 翟海珍, 苏正, 凌璐璐, 吴能友. 基于平行多裂隙模型美国沙漠峰地热田EGS开发数值模拟研究[J]. 地球物理学进展, 2017, 32(2): 546-552. doi: 10.6038/pg20170213
ZHAI Hai-zhen, SU Zheng, LING Lu-lu, WU Neng-you. Numerical simulation study of EGS development by multi-parallel fracture model at Desert peak, USA[J]. Progress in Geophysics, 2017, 32(2): 546-552. doi: 10.6038/pg20170213
Citation: ZHAI Hai-zhen, SU Zheng, LING Lu-lu, WU Neng-you. Numerical simulation study of EGS development by multi-parallel fracture model at Desert peak, USA[J]. Progress in Geophysics, 2017, 32(2): 546-552. doi: 10.6038/pg20170213

基于平行多裂隙模型美国沙漠峰地热田EGS开发数值模拟研究

详细信息
    作者简介:

    翟海珍,女,1990年生,博士研究生,主要从事增强型地热系统的研究.(E-mail:zhaihz@ms.giec.ac.cn)

    通讯作者: 苏正,男,1980年生,博士,研究员,主要从事天然气水合物和增强型地热系统数值模拟研究.(E-mail:suzheng@ms.giec.ac.cn)
  • 中图分类号: P314

Numerical simulation study of EGS development by multi-parallel fracture model at Desert peak, USA

More Information
    Corresponding author: SU Zheng
  • 基于美国沙漠峰地热田地质背景,构建引入围岩的平行多裂隙概念模型对采热过程进行数值模拟研究,结果表明此模型开采沙漠峰热储层是可行的.当系统的循环流量为100 kg/s,换热单元体厚度为40 m时,热开采前20年产出温度为210℃,电功率为7.6 MW,50年内产出温度仅下降6.2%,产出温度和产能均符合EGS商业开发的要求.热储激发程度与产出温度、热储寿命呈正相关,并对下伏层围岩热开采呈正效应.裂隙宽度对产出温度影响不大.流量与产出温度及热储寿命呈负相关.
  • 加载中
  • [1]

    Benato S, Taron J. 2016. Desert Peak EGS:Mechanisms influencing permeability evolution investigated using dual-porosity simulator TFReact[J]. Geothermics, 63:157-181.

    [2]

    Berkowitz B. 2002. Characterizing flow and transport in fractured geological media:A review[J]. Advances in Water Resources, 25(8-12):861-884.

    [3]

    Breede K, Dzebisashvili K, Liu X L, et al. 2013. A systematic review of enhanced (or engineered) geothermal systems:Past, present and future[J]. Geothermal Energy, 1(1):4.

    [4]

    Chabora E, Zemach E. 2013. Desert peak EGS project. Geothermal technologies program 2013 peer review[R]. DOE Award:DE-FC6-02ID14406. US:US Department of Energy.

    [5]

    Chabora E, Zemach E, Spielman P, et al. 2012. Hydraulic stimulation of well 27-15, desert peak geothermal field, Nevada, USA[C].//Proceedings of the 37th Workshop on Geothermal Reservoir Engineering Stanford University. Stanford, California, 2012.

    [6]

    Dempsey D, Kelkar S, Davatzes N, et al. 2015. Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the Desert Peak Enhanced Geothermal System[J]. International Journal of Rock Mechanics and Mining Sciences, 78:190-206.

    [7]

    Dershowitz W S, La Pointe P R, Doe T W. 2004. Advances in discrete fracture network modeling[C].//Proceedings of the US EPA/NGWA Fractured Rock Conference. Portland, 882-894.

    [8]

    Fox D B, Sutter D, Beckers K F, et al. 2013. Sustainable heat farming:Modeling extraction and recovery in discretely fractured geothermal reservoirs[J]. Geothermics, 46:42-54.

    [9]

    Genter A, Cuenot N, Dezayes C, et al. 2007. How a better characterization of a deep crystalline reservoir can contribute to improve EGS performance at Soultz[C].//Proceedings of the 1st European Geothermal Review. Mainz, Germany:Geothermal Energy for Electric Power Production, 34-40.

    [10]

    Guo J, Chen J L, Cao W J, et al. 2014. Research review on enhanced geothermal system[J]. Electric Power Construction (in Chinese), 35(4):10-24.

    [11]

    Hayashi K, Willis-Richards J, Hopkirk R J, et al. 1999. Numerical models of HDR geothermal reservoirs-a review of current thinking and progress[J]. Geothermics, 28(4-5):507-518.

    [12]

    Horne R N. 2012. What does the future hold for geothermal energy[J]. Journal of the Geothermal Research Society of Japan, 34(4):201-206.

    [13]

    Hu J, Su Z, Wu N Y, et al. 2014a. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System[J]. Progress in Geophysics (in Chinese), 29(3):1391-1398, doi:10.6038/pg20140354.

    [14]

    Hu J, Su Z, Wu N Y, et al. 2014b. Numerical simulation of vertical fractures heat mining process of the enhanced geothermal system[J]. Renewable Energy Resources (in Chinese), 32(6):829-835.

    [15]

    Ismail B I. 2013. Chapter 13:ORC-Based geothermal power generation and CO2-Based EGS for combined green power generation and CO2 sequestration[A].//Arman H, Yuksel I eds. New Developments in Renewable Energy[M]. Rijeka, Croatia:InTech, 303-328.

    [16]

    Kalinina E, McKenna S A, Hadgu T, et al. 2012. Analysis of the effects of heterogeneity on heat extraction in an EGS represented with the continuum fracture model[C].//Proceedings of the 37th Workshop on Geothermal Reservoir Engineering. Stanford University. Stanford, California, 2012.

    [17]

    Keller A A, Roberts P V, Kitanidis P K. 1995. Prediction of single-phase transport parameters in a variable aperture fracture[J]. Geophysical Research Letters, 22(11):1425-1438.

    [18]

    Li M T, Gou Y, Hou Z M, et al. 2015. Investigation of a new HDR system with horizontal wells and multiple fractures using the coupled wellbore-reservoir simulator TOUGH2MP-WELL/EOS3[J]. Environmental Earth Sciences, 73(10):6047-6058.

    [19]

    Lutz S J, Schriener Jr A, Schochet D, et al. 2003. Geologic characterization of pre-tertiary rocks at the desert peak east EGS project site, Churchill County, Nevada[J]. Transactions-Geothermal Resources Council, 27:865-870.

    [20]

    Mégel T, Rybach L. 2000. Production capacity and sustainability of geothermal doublets[C].//Proceedings of 2000 World Geothermal Congress. Kyushu-Tohoku, Japan, 849-854.

    [21]

    Novakowski K S, Lapcevic P A, Voralek J, et al. 1995. Preliminary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow[J]. Geophysical Research Letters, 22(11):1417-1420.

    [22]

    Ogino F, Yamamura M, Fukuda T. 1999. Heat transfer from hot dry rock to water flowing through a circular fracture[J]. Geothermics, 28(1):21-44.

    [23]

    Pruess K. 1988. Modeling of geothermal reservoirs:Fundamental processes, computer simulation, and field applications[C].//Proceedings 10th New Zealand Geothermal Workshop. New Zealand, 15-21.

    [24]

    Robertson-Tait A, Morris C, Schochet D. 2005. The desert peak east EGS project:A progress report[C].//Proceedings of 2005 World Geothermal Congress. Antalya, Turkey.

    [25]

    Sanyal S K, Butler S J. 2005. An analysis of power generation prospects from enhanced geothermal systems[C].//Proceedings of 2005 World Geothermal Congress. Antalya, Turkey.

    [26]

    Shaik A R, Rahman S S, Tran N H, et al. 2011. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering, 31(10):1600-1606.

    [27]

    Tenma N, Yamaguchi T, Zyvoloski G. 2008. The Hijiori Hot Dry Rock test site, Japan:Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics, 37(1):19-52.

    [28]

    Tester J W, Anderson B J, Batchelor A S, et al. 2006. The future of geothermal energy:Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. Idaho Falls, Idaho:Idaho National Laboratory.

    [29]

    Tian L L. 2009. Experimental and numerical study on the thermo-hydrological coupling of fractured rocks (in Chinese)[MSc. thesis]. Beijing:Beijing Jiaotong University.

    [30]

    Wang X X, Wu N Y, Su Z, et al. 2012. Progress of the enhanced geothermal systems (EGS) development technology[J]. Progress in Geophysics (in Chinese), 27(1):355-362, doi:10.6038/j.issn.1004-2903.2012.01.041.

    [31]

    Wu B S, Zhang X, Jeffrey R G, et al. 2015. Perturbation analysis for predicting the temperatures of water flowing through multiple parallel fractures in a rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 76:162-173.

    [32]

    Xu T F, Zhang Y J, Zeng Z F, et al. 2012. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review (in Chinese), 30(32):42-45.

    [33]

    Zeng Y C, Su Z, Wu N Y, et al. 2013. Numerical simulation of deep geothermal energy mining by two-vertical wells system at Desert Peak field, USA[J]. Mining and Metallurgical Engineering (in Chinese), (2):8-13, 17.

    [34]

    Zeng Y C, Su Z, Wu N Y. 2013a. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field[J]. Energy, 56:92-107.

    [35]

    Zeng Y C, Su Z, Wu N Y, et al. 2015. Numerical simulation of power and impedance of two-well enhanced geothermal system[J]. Acta Energiae Solaris Sinica (in Chinese), 36(4):928-935.

    [36]

    Zeng Y C, Wu N Y, Su Z, et al. 2013b. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field[J]. Energy, 63:268-282.

    [37]

    Zhai H Z, Su Z, Ling L L, et al. 2016. Impact of heat transfer unit on EGS heat extraction in the multi-parallel fracture model[J]. Progress in Geophysics (in Chinese), 31(3):1399-1405, doi:10.6038/pg20160364.

    [38]

    附中文参考文献

    [39]

    郭剑, 陈继良, 曹文炅,等. 2014. 增强型地热系统研究综述[J]. 电力建设, 35(4):10-24.

    [40]

    胡剑, 苏正, 吴能友,等. 2014a. 增强型地热系统热流耦合水岩温度场分析[J]. 地球物理学进展, 29(3):1391-1398, doi:10.6038/pg20140354.

    [41]

    胡剑, 苏正, 吴能友,等. 2014b. 增强型地热系统垂直裂隙热储热开采过程数值模拟[J]. 可再生能源, 32(6):829-835.

    [42]

    田鲁鲁. 2009. 裂隙岩体渗流-传热耦合模型试验及数值模拟研究[硕士论文]. 北京:北京交通大学.

    [43]

    王晓星, 吴能友, 苏正,等. 2012. 增强型地热系统开发技术研究进展[J]. 地球物理学进展, 27(1):355-362, doi:10.6038/j.issn.1004-2903.2012.01.041.

    [44]

    许天福, 张延军, 曾昭发,等. 2012. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 30(32):42-45.

    [45]

    曾玉超, 苏正, 吴能友,等. 2013. 双竖直井开采美国沙漠峰深层地热数值模拟[J]. 矿冶工程, (2):8-13, 17.

    [46]

    曾玉超, 苏正, 吴能友,等. 2015. 双井式增强型地热系统产能和阻抗数值模拟研究[J]. 太阳能学报, 36(4):928-935.

    [47]

    翟海珍, 苏正, 凌璐璐,等. 2016. 平行多裂隙模型中换热单元体对EGS釆热的影响[J]. 地球物理学进展, 31(3):1399-1405, doi:10.6038/pg20160364.

  • 加载中
计量
  • 文章访问数:  163
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2016-06-17
修回日期:  2017-01-26
刊出日期:  2017-04-20

目录