Numerical simulation study of EGS development by multi-parallel fracture model at Desert peak, USA
-
摘要: 基于美国沙漠峰地热田地质背景,构建引入围岩的平行多裂隙概念模型对采热过程进行数值模拟研究,结果表明此模型开采沙漠峰热储层是可行的.当系统的循环流量为100 kg/s,换热单元体厚度为40 m时,热开采前20年产出温度为210℃,电功率为7.6 MW,50年内产出温度仅下降6.2%,产出温度和产能均符合EGS商业开发的要求.热储激发程度与产出温度、热储寿命呈正相关,并对下伏层围岩热开采呈正效应.裂隙宽度对产出温度影响不大.流量与产出温度及热储寿命呈负相关.Abstract: Based on the geological background of American Desert Peak field, a multi-parallel fracture model (MPFM) with surrounding rock is established and applied to the numerical simulation study of heat extraction process, the results of which show that it is feasible to extract geothermal energy at Desert peak field with this model. The system with a circulation fluid flow of 100kg/s, thickness of heat transfer unit (HTU) of 40m, has an outlet temperature of 210℃, electric power of 7.6MW in the first 20 years. After fifty-year extraction, the outlet temperature is modeled to decreases only by 6.2%. The production temperature and power can meet the application demand of EGS. The stimulation degree of reservoir has a positive effect on outlet temperature, lifetime of the reservoir, and heat extraction of underlying surrounding rock. While the width of fractures has a lesser impact on outlet temperature. The fluid flow has a negative correlation with outlet temperature and lifetime.
-
-
[1] Benato S, Taron J. 2016. Desert Peak EGS:Mechanisms influencing permeability evolution investigated using dual-porosity simulator TFReact[J]. Geothermics, 63:157-181.
[2] Berkowitz B. 2002. Characterizing flow and transport in fractured geological media:A review[J]. Advances in Water Resources, 25(8-12):861-884.
[3] Breede K, Dzebisashvili K, Liu X L, et al. 2013. A systematic review of enhanced (or engineered) geothermal systems:Past, present and future[J]. Geothermal Energy, 1(1):4.
[4] Chabora E, Zemach E. 2013. Desert peak EGS project. Geothermal technologies program 2013 peer review[R]. DOE Award:DE-FC6-02ID14406. US:US Department of Energy.
[5] Chabora E, Zemach E, Spielman P, et al. 2012. Hydraulic stimulation of well 27-15, desert peak geothermal field, Nevada, USA[C].//Proceedings of the 37th Workshop on Geothermal Reservoir Engineering Stanford University. Stanford, California, 2012.
[6] Dempsey D, Kelkar S, Davatzes N, et al. 2015. Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the Desert Peak Enhanced Geothermal System[J]. International Journal of Rock Mechanics and Mining Sciences, 78:190-206.
[7] Dershowitz W S, La Pointe P R, Doe T W. 2004. Advances in discrete fracture network modeling[C].//Proceedings of the US EPA/NGWA Fractured Rock Conference. Portland, 882-894.
[8] Fox D B, Sutter D, Beckers K F, et al. 2013. Sustainable heat farming:Modeling extraction and recovery in discretely fractured geothermal reservoirs[J]. Geothermics, 46:42-54.
[9] Genter A, Cuenot N, Dezayes C, et al. 2007. How a better characterization of a deep crystalline reservoir can contribute to improve EGS performance at Soultz[C].//Proceedings of the 1st European Geothermal Review. Mainz, Germany:Geothermal Energy for Electric Power Production, 34-40.
[10] Guo J, Chen J L, Cao W J, et al. 2014. Research review on enhanced geothermal system[J]. Electric Power Construction (in Chinese), 35(4):10-24.
[11] Hayashi K, Willis-Richards J, Hopkirk R J, et al. 1999. Numerical models of HDR geothermal reservoirs-a review of current thinking and progress[J]. Geothermics, 28(4-5):507-518.
[12] Horne R N. 2012. What does the future hold for geothermal energy[J]. Journal of the Geothermal Research Society of Japan, 34(4):201-206.
[13] Hu J, Su Z, Wu N Y, et al. 2014a. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System[J]. Progress in Geophysics (in Chinese), 29(3):1391-1398, doi:10.6038/pg20140354.
[14] Hu J, Su Z, Wu N Y, et al. 2014b. Numerical simulation of vertical fractures heat mining process of the enhanced geothermal system[J]. Renewable Energy Resources (in Chinese), 32(6):829-835.
[15] Ismail B I. 2013. Chapter 13:ORC-Based geothermal power generation and CO2-Based EGS for combined green power generation and CO2 sequestration[A].//Arman H, Yuksel I eds. New Developments in Renewable Energy[M]. Rijeka, Croatia:InTech, 303-328.
[16] Kalinina E, McKenna S A, Hadgu T, et al. 2012. Analysis of the effects of heterogeneity on heat extraction in an EGS represented with the continuum fracture model[C].//Proceedings of the 37th Workshop on Geothermal Reservoir Engineering. Stanford University. Stanford, California, 2012.
[17] Keller A A, Roberts P V, Kitanidis P K. 1995. Prediction of single-phase transport parameters in a variable aperture fracture[J]. Geophysical Research Letters, 22(11):1425-1438.
[18] Li M T, Gou Y, Hou Z M, et al. 2015. Investigation of a new HDR system with horizontal wells and multiple fractures using the coupled wellbore-reservoir simulator TOUGH2MP-WELL/EOS3[J]. Environmental Earth Sciences, 73(10):6047-6058.
[19] Lutz S J, Schriener Jr A, Schochet D, et al. 2003. Geologic characterization of pre-tertiary rocks at the desert peak east EGS project site, Churchill County, Nevada[J]. Transactions-Geothermal Resources Council, 27:865-870.
[20] Mégel T, Rybach L. 2000. Production capacity and sustainability of geothermal doublets[C].//Proceedings of 2000 World Geothermal Congress. Kyushu-Tohoku, Japan, 849-854.
[21] Novakowski K S, Lapcevic P A, Voralek J, et al. 1995. Preliminary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow[J]. Geophysical Research Letters, 22(11):1417-1420.
[22] Ogino F, Yamamura M, Fukuda T. 1999. Heat transfer from hot dry rock to water flowing through a circular fracture[J]. Geothermics, 28(1):21-44.
[23] Pruess K. 1988. Modeling of geothermal reservoirs:Fundamental processes, computer simulation, and field applications[C].//Proceedings 10th New Zealand Geothermal Workshop. New Zealand, 15-21.
[24] Robertson-Tait A, Morris C, Schochet D. 2005. The desert peak east EGS project:A progress report[C].//Proceedings of 2005 World Geothermal Congress. Antalya, Turkey.
[25] Sanyal S K, Butler S J. 2005. An analysis of power generation prospects from enhanced geothermal systems[C].//Proceedings of 2005 World Geothermal Congress. Antalya, Turkey.
[26] Shaik A R, Rahman S S, Tran N H, et al. 2011. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system[J]. Applied Thermal Engineering, 31(10):1600-1606.
[27] Tenma N, Yamaguchi T, Zyvoloski G. 2008. The Hijiori Hot Dry Rock test site, Japan:Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics, 37(1):19-52.
[28] Tester J W, Anderson B J, Batchelor A S, et al. 2006. The future of geothermal energy:Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. Idaho Falls, Idaho:Idaho National Laboratory.
[29] Tian L L. 2009. Experimental and numerical study on the thermo-hydrological coupling of fractured rocks (in Chinese)[MSc. thesis]. Beijing:Beijing Jiaotong University.
[30] Wang X X, Wu N Y, Su Z, et al. 2012. Progress of the enhanced geothermal systems (EGS) development technology[J]. Progress in Geophysics (in Chinese), 27(1):355-362, doi:10.6038/j.issn.1004-2903.2012.01.041.
[31] Wu B S, Zhang X, Jeffrey R G, et al. 2015. Perturbation analysis for predicting the temperatures of water flowing through multiple parallel fractures in a rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 76:162-173.
[32] Xu T F, Zhang Y J, Zeng Z F, et al. 2012. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review (in Chinese), 30(32):42-45.
[33] Zeng Y C, Su Z, Wu N Y, et al. 2013. Numerical simulation of deep geothermal energy mining by two-vertical wells system at Desert Peak field, USA[J]. Mining and Metallurgical Engineering (in Chinese), (2):8-13, 17.
[34] Zeng Y C, Su Z, Wu N Y. 2013a. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field[J]. Energy, 56:92-107.
[35] Zeng Y C, Su Z, Wu N Y, et al. 2015. Numerical simulation of power and impedance of two-well enhanced geothermal system[J]. Acta Energiae Solaris Sinica (in Chinese), 36(4):928-935.
[36] Zeng Y C, Wu N Y, Su Z, et al. 2013b. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field[J]. Energy, 63:268-282.
[37] Zhai H Z, Su Z, Ling L L, et al. 2016. Impact of heat transfer unit on EGS heat extraction in the multi-parallel fracture model[J]. Progress in Geophysics (in Chinese), 31(3):1399-1405, doi:10.6038/pg20160364.
[38] 附中文参考文献
[39] 郭剑, 陈继良, 曹文炅,等. 2014. 增强型地热系统研究综述[J]. 电力建设, 35(4):10-24.
[40] 胡剑, 苏正, 吴能友,等. 2014a. 增强型地热系统热流耦合水岩温度场分析[J]. 地球物理学进展, 29(3):1391-1398, doi:10.6038/pg20140354.
[41] 胡剑, 苏正, 吴能友,等. 2014b. 增强型地热系统垂直裂隙热储热开采过程数值模拟[J]. 可再生能源, 32(6):829-835.
[42] 田鲁鲁. 2009. 裂隙岩体渗流-传热耦合模型试验及数值模拟研究[硕士论文]. 北京:北京交通大学.
[43] 王晓星, 吴能友, 苏正,等. 2012. 增强型地热系统开发技术研究进展[J]. 地球物理学进展, 27(1):355-362, doi:10.6038/j.issn.1004-2903.2012.01.041.
[44] 许天福, 张延军, 曾昭发,等. 2012. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 30(32):42-45.
[45] 曾玉超, 苏正, 吴能友,等. 2013. 双竖直井开采美国沙漠峰深层地热数值模拟[J]. 矿冶工程, (2):8-13, 17.
[46] 曾玉超, 苏正, 吴能友,等. 2015. 双井式增强型地热系统产能和阻抗数值模拟研究[J]. 太阳能学报, 36(4):928-935.
[47] 翟海珍, 苏正, 凌璐璐,等. 2016. 平行多裂隙模型中换热单元体对EGS釆热的影响[J]. 地球物理学进展, 31(3):1399-1405, doi:10.6038/pg20160364.
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0