基于位场分离方法寻找梅山铁矿接替资源

谢磊磊, 蒋甫玉, 黄岩. 基于位场分离方法寻找梅山铁矿接替资源[J]. 地球物理学进展, 2017, 32(6): 2560-2570. doi: 10.6038/pg20170637
引用本文: 谢磊磊, 蒋甫玉, 黄岩. 基于位场分离方法寻找梅山铁矿接替资源[J]. 地球物理学进展, 2017, 32(6): 2560-2570. doi: 10.6038/pg20170637
XIE Lei-lei, JIANG Fu-yu, HUANG Yan. Search for replacement resources of Meishan iron mine based on potential field separation methods[J]. Progress in Geophysics, 2017, 32(6): 2560-2570. doi: 10.6038/pg20170637
Citation: XIE Lei-lei, JIANG Fu-yu, HUANG Yan. Search for replacement resources of Meishan iron mine based on potential field separation methods[J]. Progress in Geophysics, 2017, 32(6): 2560-2570. doi: 10.6038/pg20170637

基于位场分离方法寻找梅山铁矿接替资源

详细信息
    作者简介:

    谢磊磊,男,1989年生,安徽阜阳人,工程师,主要从事固体地球物理学研究.(E-mail:15240240707@163.com)

    通讯作者: 蒋甫玉,男,1981年生,安徽合肥人,博士,讲师,主要从事固体地球物理学研究.(E-mail:jiangfy@hhu.edu.cn)
  • 中图分类号: P631

Search for replacement resources of Meishan iron mine based on potential field separation methods

More Information
    Corresponding author: JIANG Fu-yu
  • 在重力勘探中,重力异常分离的目的是消除干扰,有针对性地突出目标异常.为探讨各种分离方法的理论基础及使用效果,应用位场分离方法对理论模型产生的重力场进行分离并做误差分析.试验结果表明:趋势分析法和解析延拓法获得的区域异常场重力等值线呈长轴为南北向的椭圆状特征,局部异常在南北向呈"两低夹一高"的特征,与理论模型布格重力异常图有差别.经剖面线形态比较和误差分析,二阶趋势分析、向上延拓225 m分离出的局部场高值区基本与理论模型相符.插值切割法和匹配滤波法获得的异常场重力等值线仍呈同心圆状,与模型重力等值线形态吻合.当切割半径为4 m、切割2次时,其剖面线整体拟合效果好于解析延拓法,但中心点附近的曲线拟合效果较差,且切割次数增大时,易产生震荡效应.匹配滤波法的关键在于合理地选取功率谱曲线的中高、低频段,通过适宜的滤波器滤波以提取不同波数成分的异常场.为寻找梅山铁矿接替资源,对该区重力异常进行分离.实践表明:二阶趋势分析、向上延拓700 m、切割半径10 m切割一次、匹配滤波法的分离结果具有较好的一致性:萝卜山-刘家村带、梅山村南部、黄林库-吴家洼带、主矿区深部及东南部存在幅值较高的剩余重力异常,揭示了铁矿资源分布的一般特征,为寻找梅山铁矿接替资源指明了方向.
  • 加载中
  • [1]

    Abdelrahman E M, Bayoumi A I, El-Araby H M. 1991. A least-squares minimization approach to invert gravity data[J]. Geophysics, 56(1):115-118, doi:10.1190/1.1442946.

    [2]

    Abdelrahman E M, El-Araby T M. 1996. Shape and depth solutions from moving average residual gravity anomalies[J]. Journal of Applied Geophysics, 36(2-3):89-95, doi:10.1016/S0926-9851(96)00038-9.

    [3]

    Agarwal B N P, Lal L. 1971. Application of rational approximation in calculation of the second derivative of the gravity field[J]. Geophysics, 36(3):571-581, doi:10.1190/1.1440192.

    [4]

    Agocs W B. 1951. Least squares residual anomaly determination[J]. Geophysics, 16(4):686-696, doi:10.1190/1.1437720.

    [5]

    Chen X H. 2003. Geological characteristics and genesis of siderite in Meishan iron deposit Nanjing[J]. Mineral Resources and Geology (in Chinese), 17(S1):361-364.

    [6]

    Cheng F D, Liu D J, Yao R X. 1987. A study on the identification of regional and local gravity fields[J]. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 9(1):1-9.

    [7]

    Clarke G K C. 1969. Optimum second-derivative and downward-continuation filters[J]. Geophysics, 34(3):424-437, doi:10.1190/1.1440020.

    [8]

    Duan B C, Xu S Z, Yan H J, et al. 1998. Application of interpolation-cut method for magnetic anomaly division to igneous mass investigation[J]. Oil Geophysical Prospecting (in Chinese), 33(1):125-131.

    [9]

    Grant F S. 1972. Review of data processing and interpretation methods in gravity and magnetics, 1964-1971[J]. Geophysics, 37(4):647-661, doi:10.1190/1.1440288.

    [10]

    Gupta V K, Ramani N. 1980. Some aspects of regional-residual separation of gravity anomalies in a Precambrian terrain[J]. Geophysics, 45(9):1412-1426, doi:10.1190/1.1441130.

    [11]

    Hao T Y, Mancheol S, Wang Q S, et al. 2002. A study on the extension of fault zones in Yellow Sea and its adjacent areas based on gravity data[J]. Chinese Journal of Geophysics (in Chinese), 45(3):385-397, doi:10.3321/j.issn:0001-5733.2002.03.010.

    [12]

    Hou Z Z, Yang W C. 1997. Wavelet transform and multi-scale analysis on gravity anomalies of China[J]. Acta Geophysica Sinica (in Chinese), 40(1):85-95.

    [13]

    Liu D J, Cheng F D. 1997. A multiple-cut method for identification of regional and local gravity fields[J]. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 19(1):31-35.

    [14]

    Liu Q S, Qiu N, Zheng J P, et al. 2015. Crustal large-scale serpentinized mantle peridotite body in the Sulu ultrahigh-pressure metamorphic belt, eastern China:Evidence from gravity and magnetic anomalies[J]. Journal of Structural Geology, 70:190-199.

    [15]

    Liu Y, Yan J Y, Wu M A, et al. 2012. Exploring deep concealed ore bodies based on gravity anomaly separation methods:A case study of the Nihe iron deposit[J]. Chinese Journal of Geophysics (in Chinese), 55(12):4181-4193, doi:10.6038/j.issn.0001-5733.2012.12.030.

    [16]

    Luan W G. 1983. The stabilized algorithm of the analytic continuation for the potential field[J]. Acta Geophysica Sinica (in Chinese), 26(3):263-274.

    [17]

    Martínez-Moreno F J, Galindo-Zaldívar J, Pedrera A, et al. 2015. Regional and residual anomaly separation in microgravity maps for cave detection:The case study of Gruta de las Maravillas (SW Spain)[J]. Journal of Applied Geophysics, 114:1-11, doi:10.1016/j.jappgeo.2015.01.001.

    [18]

    Oldham C H G, Sutherland D B. 1955. Orthogonal polynomials:their use in estimating the regional effect[J]. Geophysics, 20(2):295-306, doi:10.1190/1.1438143.

    [19]

    Pawlowski R S, Hansen R O. 1990. Gravity anomaly separation by wiener filtering[J]. Geophysics, 55(5):539-548, doi:10.1190/1.1442865.

    [20]

    Peters L J. 1949. The direct approach to magnetic interpretation and its practical application[J]. Geophysics, 14(3):290-320, doi:10.1190/1.1437537.

    [21]

    Simpson S M Jr. 1954. Least squares polynomial fitting to gravitational data and density plotting by digital computers[J]. Geophysics, 19(2):255-269, doi:10.1190/1.1437990.

    [22]

    Spector A, Grant F S. 1970. Statistical models for interpreting aeromagnetic data[J]. Geophysics, 35(2):293-302. doi:10.1190/1.1440092.

    [23]

    Sun X H, Gao L K, Zhang L S, et al. 2014. On geological characters of gold-copper-molybdenum polymetallic deposit in Meishan iron mine periphery[J]. Journal of Geology (in Chinese), 38(1):128-134.

    [24]

    Wen B H, Cheng F D. 1990. A new interpolating cut method for identifying regional and local fields of magnetic anomaly[J]. Journal of Central-South Institute of Mining and Metallurgy (in Chinese), 21(3):229-235.

    [25]

    Woolrych T R H, Christensen A N, McGill D L, et al. 2015. Geophysical methods used in the discovery of the Kitumba iron oxide copper gold deposit[J]. Interpretation, 3(2):SL15-SL25, doi:10.1190/INT-2014-0201.1.

    [26]

    Yang H, Wang J L, Wang X M, et al. 1999. Apparent depth filter for gravity anomalies and a case study[J]. Chinese Journal of Geophysics (in Chinese), 42(3):416-421, doi:10.3321/j.issn:0001-5733.1999.03.015.

    [27]

    Zeng H L. 2005. Gravity Field and Gravity Exploration (in Chinese)[M]. Beijing:Geological Publishing House.

    [28]

    陈小华. 2003. 梅山铁矿床菱铁矿的地质特征及成因探讨[J]. 矿产与地质, 17(S1):361-364.

    [29]

    程方道, 刘东甲, 姚汝信. 1987. 划分重力区域场与局部场的研究[J]. 物化探计算技术, 9(1):1-9.

    [30]

    段本春, 徐世浙, 阎汉杰,等. 1998. 划分磁异常场的插值切割法在研究火成岩体分布中的应用[J]. 石油地球物理勘探, 33(1):125-131.

    [31]

    郝天珧, Mancheol S, 王谦身,等. 2002. 根据重力数据研究黄海周边断裂带在海区的延伸[J]. 地球物理学报, 45(3):385-397, doi:10.3321/j.issn:0001-5733.2002.03.010.

    [32]

    侯遵泽, 杨文采. 1997. 中国重力异常的小波变换与多尺度分析[J]. 地球物理学报, 40(1):85-95.

    [33]

    刘东甲, 程方道. 1997. 划分重力区域场与局部场的多次切割法[J]. 物探化探计算技术, 19(1):31-35.

    [34]

    刘彦, 严加永, 吴明安,等. 2012. 基于重力异常分离方法寻找深部隐伏铁矿-以安徽泥河铁矿为例[J]. 地球物理学报, 55(12):4181-4193, doi:10.6038/j.issn.0001-5733.2012.12.030.

    [35]

    栾文贵. 1983. 场位解析延拓的稳定化算法[J]. 地球物理学报, 26(3):263-274.

    [36]

    孙喜华, 高丽坤, 张龙生,等. 2014. 梅山铁矿外围金、铜、钼多金属矿地质特征[J]. 地质学刊, 38(1):128-134.

    [37]

    文百红, 程方道. 1990. 用于划分磁异常的新方法-插值切割法[J]. 中南矿冶学院学报, 21(3):229-235.

    [38]

    杨辉, 王家林, 王小牧,等. 1999. 重力异常视深度滤波及应用[J]. 地球物理学报, 42(3):416-421, doi:10.3321/j.issn:0001-5733.1999.03.015.

    [39]

    曾华霖. 2005. 重力场与重力勘探[M]. 北京:地质出版社.

  • 加载中
计量
  • 文章访问数:  82
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2017-04-26
修回日期:  2017-10-06
刊出日期:  2017-12-20

目录