震源逆时定位的成像条件分析

雷朝阳, 刘怀山, 张茗. 震源逆时定位的成像条件分析[J]. 地球物理学进展, 2019, 34(6): 2276-2282. doi: 10.6038/pg2019CC0256
引用本文: 雷朝阳, 刘怀山, 张茗. 震源逆时定位的成像条件分析[J]. 地球物理学进展, 2019, 34(6): 2276-2282. doi: 10.6038/pg2019CC0256
LEI Chao-yang, LIU Huai-shan, ZHANG Ming. Analysis of the imaging conditions of reverse-time location[J]. Progress in Geophysics, 2019, 34(6): 2276-2282. doi: 10.6038/pg2019CC0256
Citation: LEI Chao-yang, LIU Huai-shan, ZHANG Ming. Analysis of the imaging conditions of reverse-time location[J]. Progress in Geophysics, 2019, 34(6): 2276-2282. doi: 10.6038/pg2019CC0256

震源逆时定位的成像条件分析

详细信息
    作者简介:

    雷朝阳,男,1991年生,助理工程师,主要从事储层预测方向研究工作. (E-mail: leichy.swty@qq.com)

  • 中图分类号: P631

Analysis of the imaging conditions of reverse-time location

  • 震源逆时定位采用不同的成像条件可以实现自动定位,而不同成像条件的特性与应用条件是该技术值得研究的问题.本文结合波场的逆时延拓特征与成像条件的物理含义,明确了波场的逆时延拓特征是构建成像条件的基础,指出最大振幅成像条件可以同时确定震源位置与激发时间,而相关型成像条件的定位精度要高于最大振幅成像条件且有可能突破绕射极限的控制,其中多维互相关成像条件适用于稀疏检波器分布的情况.针对自相关定位剖面中浅部强振幅假象提出了改进自相关成像条件.通过不同的模型测试,验证了本文关于不同成像条件的结论及提出的改进自相关成像条件的有效性.
  • 加载中
  • [1]

    1 Artman B, Podladtchikov I, Goertz A, et al.2009. Elastic time-reverse modeling imaging conditions[C], 79th Annual International Meeting, SEG, Expanded Abstracts, 1207-1211.

    [2]

    2 Behura J, Forghani F, Bazagani F.2013. Improving microseismic imaging: role of acquisition, velocity model, and imaging condition[C], 83th Annual International Meeting, SEG, Expanded Abstracts, 2119-2123.

    [3]

    3 Fink M.1992. Time reversal of ultrasonic fields-Part 1: basic principles[J]. IEEE Trans. Ultra. Ferroelec.Freq. Control, 39(5): 555-566.

    [4]

    4 Gajewski D, Tessmer E.2005. Reverse modelling for seismic event characterization[J]. Geophys. J. Int., 163(1): 276-284.

    [5]

    5 GE Qi-Xin, HAN Li-Guo, JIN Zhong-Yuan.2017. Time-reverse imaging of source location based on random backward propagation and sifting model[J]. Chinese Journal Of Geophysics (in Chinese), 60(7): 2869-2884, doi: 10.6038/cjg20170731.

    [6]

    6 Gomberg J, Robinstein J L, Peng Z, et al.2008. Widespread Triggering of Nonvolcanic Tremor in California[J]. Science, 319(5860): 173-173.

    [7]

    7 Gu Miaoyuan.2016. Elastic Wave Time-reversal Source Imaging [Master’s thesis]. Hefei: University of Science and Technology of China, 29-30.

    [8]

    8 Hu L Z, McMechan G A.1988. Elastic finite-difference modelling and imaging for earthquake sources[J]. Geophys. J. Int., 95(2): 303-313.

    [9]

    9 Larmat C S, Guyer R A, Johnson P A.2010. Time-reversal methods in geophysics[J]. Physics Today, 63(8): 31-35.

    [10]

    10 Li Lei, Chen Hao, Wang Xiu-Ming.2015. Weighted-elastic-wave interferometric imaging of microseismic source location[J]. Applied Geophysics, 12(2): 221-234.

    [11]

    11 Li Zhenchun, Sheng Guanqun, Wang weibo, et al.2014. Time-reverse microseismic hypocenter location with interferometric imaging condition based on surface and downhole multi-components[J]. Oil Geophysical Prospecting (in Chinese), 49(4): 661-666, 671.

    [12]

    12 Lokmer I, O’Brien G S, Stich D, et al.2009. Time reversal imaging of synthetic volcanic tremor sources[J]. Geophys. Res. Lett., 36(12): L12308.

    [13]

    13 Lu R.2008. Time Reversed Acoustics and Applications to Earthquake Location and Salt Dome Flank Imaging [Ph.D. thesis]. Cambridge: Massachusetts Institute of Technology, 37-37.

    [14]

    14 McMechan G A.1982. Determination of source parameters by wavefield extrapolation[J]. Geophysical Journal International, 71(3): 613-628.

    [15]

    15 Nakata N, Beroza G C.2016. Reverse time migration for microseismic sources using the geometric mean as an imaging condition[J]. Geophysics, 81(2): KS51-KS60.

    [16]

    16 Sava P.2011. Micro-earthquake monitoring with sparsely sampled data[J]. Journal of Petroleum Exploration and Production Technologies, 1(1): 43-49.

    [17]

    17 Sun J, Zhu T, Fomel S, et al.2015. Investigating the possibility of locating microseismic sources using distributed sensor networks[C].//SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, 2485-2490.

    [18]

    18 Wang C L, Cheng J B, Yin C, et al.2013. Microseismic events location of surface and borehole observation with reverse-time focusing using interferometry technique[J]. Chinese Journal of Geophysics (in Chinese), 56(9): 3184-3196, doi: 10.6038/cjg20130931.

    [19]

    19 Yang Xinchao, Zhu Haibo, Cui Shuguo, et al.2015. Application of P-wave first-motion focal mechanism solutions in microseismic monitoring for hydraulic fracturing[J]. Geophysical Prospecting for Petroleum (in Chinese), 54(1): 43-50.

    [20]

    20 Zhu Tieyuan.2014. Time-reverse modelling of acoustic wave propagation in attenuating media[J]. Geophys. J. Int., 197(1): 483-494.

    [21]

    21 Zou Z, Zhou H W, Gurrola H.2014. Reverse-time imaging of a doublet of microearthquakes in the Three Gorges Reservoir region[J]. Geophys. J. Int., 196(3): 1858-1868.

    [22]

    22 葛奇鑫, 韩立国, 靳中原. 2017. 基于随机反传和筛选模型的微震逆时定位成像[J]. 地球物理学报, 60(7): 2869-2884, doi: 10.6038/cjg20170731.

    [23]

    23 顾庙元. 2016. 弹性波震源逆时成像研究[硕士论文]. 合肥: 中国科学技术大学, 29-30.

    [24]

    24 李振春, 盛冠群, 王维波, 等. 2014. 井地联合观测多分量微地震逆时干涉定位[J]. 石油地球物理勘探, 49(4): 661-666, 671.

    [25]

    25 王晨龙, 程玖兵, 尹陈, 等. 2013. 地面与井中观测条件下的微地震干涉逆时定位算法[J]. 地球物理学报, 56(9): 3184-3196, doi: 10.6038/cjg20130931.

    [26]

    26 杨心超, 朱海波, 崔树果, 等. 2015. P波初动震源机制解在水力压裂微地震监测中的应用[J]. 石油物探, 54(1): 43-50.

  • 加载中
计量
  • 文章访问数:  158
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2019-01-11
修回日期:  2019-08-23
刊出日期:  2019-12-20

目录