基于小波细节信息的重力源参数估算

汤井田, 杨磊, 任政勇, 胡双贵, 钟乙源, 杨智. 基于小波细节信息的重力源参数估算[J]. 地球物理学进展, 2019, 34(6): 2320-2327. doi: 10.6038/pg2019CC0452
引用本文: 汤井田, 杨磊, 任政勇, 胡双贵, 钟乙源, 杨智. 基于小波细节信息的重力源参数估算[J]. 地球物理学进展, 2019, 34(6): 2320-2327. doi: 10.6038/pg2019CC0452
TANG Jing-tian, YANG Lei, REN Zheng-yong, HU Shuang-gui, ZHONG Yi-yuan, YANG Zhi. Gravity source parameters estimation based on wavelet details information[J]. Progress in Geophysics, 2019, 34(6): 2320-2327. doi: 10.6038/pg2019CC0452
Citation: TANG Jing-tian, YANG Lei, REN Zheng-yong, HU Shuang-gui, ZHONG Yi-yuan, YANG Zhi. Gravity source parameters estimation based on wavelet details information[J]. Progress in Geophysics, 2019, 34(6): 2320-2327. doi: 10.6038/pg2019CC0452

基于小波细节信息的重力源参数估算

详细信息
    作者简介:

    汤井田,男,1965年生,教授,博士生导师,主要从事电磁场理论和应用、地球物理信号处理及反演成像等研究.(E-mail:jttang@csu.edu.cn)

    通讯作者: 任政勇,男,1983年生,教授,博士生导师,从事重磁电正演和反演研究.(E-mail: renzhengyong@csu.edu.cn)
  • 中图分类号: P631

Gravity source parameters estimation based on wavelet details information

More Information
    Corresponding author: REN Zheng-yong
  • 小波多尺度分析方法在位场数据处理领域得到了广泛关注.目前,人们对利用该方法分离位场数据所得到的小波细节横向边缘信息认知不够深入,有必要做进一步探究.本文首先采用小波多尺度位场分离方法分离出区域和局部重力异常,然后利用haar小波变换HVD模法对局部异常信息进行多尺度分析,将所得到的小波细节信息进行水平、垂直和对角线方向分解,探测出局部异常体的横向边缘特征,并利用频谱分析方法估测出场源深度.最后,通过理论模型和南非Witwatersrand Basin航空实测重力数据进行分析,表明小波多尺度分析方法不仅能很好地实现位场分离、近似提取异常体场源深度,还可以利用小波细节信息有效地分辨出局部异常体的横向边缘特征,提高其识别精度.
  • 加载中
  • [1]

    1 Alp H, Albora A M, Tur H.2011. A view of tectonic structure and gravity anomalies of Hatay Region Southern Turkey using wavelet analysis[J]. Journal of Applied Geophysics, 75(3): 498-505.

    [2]

    2 Beiki M, Pedersen L B.2012. Eigenvector analysis of gravity gradient tensor to locate geologic bodies[J]. Geophysics, 75(6): 137-149.

    [3]

    3 Chen C J, Ren Z Y, Pan K J, et al.2018. Exact solutions of the vertical gravitational anomaly for a polyhedral prism with vertical polynomial density contrast of arbitrary orders[J]. Geophysical Journal International, 214(3): 2115-2132.

    [4]

    4 Chen G X, Sun J S, Liu T Y.2012. Wavelet Multi-scale decomposition of time variable gravity field detected by GRACE satellite: a case from Wenchuan MS 8.0 Earthquake, 2008[J]. Geomatics and Information Science of Wuhan University (in Chinese), 37(6): 679-682.

    [5]

    5 Di J Z.2010. Principle of Wavelet Analysis [M]. Beijing: Science Press.

    [6]

    6 Diao B, Wang J L, Cheng S Y.2007. The confirmation of decomposition level in wavelet Multi-Resolution analysis for gravity anomalies[J]. Earth Science-Journal of China University of Geosciences(in Chinese), 32(4): 564-568.

    [7]

    7 Hou Z Z, Yang W C.1997. Wavelet transform and Multi-scale analysis on gravity anomalies of China[J]. Chinese Journal of Geophysics (in Chinese), 40(1): 85-95.

    [8]

    8 Li C B, Wang L S, Sun B.2014. Interpretations of bouguer gravity anomaly with the method of wavelet Multi-scale decomposition(WGD) in Songliao Basin, Northeast China[J]. Geological Journal of China Universities (in Chinese), 22(2): 268-276.

    [9]

    9 Li G, Xiao X, Tang J T, et al.2017. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering[J]. Applied Geophysics, 14(4), 581-589.

    [10]

    10 Li J, Zhou Y X, Xu H P.2001. The selection of wavelet generating functions in Data-Processing of gravity field[J]. Geophysical and geochemical Exploration (in Chinese), 25(6): 410-417.

    [11]

    11 Li Y G, Oldenburg D W.1998. 3-D inversion of gravity data[J]. Geophysics, 63(1): 109-119.

    [12]

    12 Liu F, Zhu Y Q, Chen S.2013. Multi-scale decomposition of wavelet of the temporal gravity variation in North China[J]. Earthquake Research in China (in Chinese), 29(1), 124-131.

    [13]

    13 Lou H, Wang C Y.2005. Wavelet analysis and interpretation of gravity data in SiChuan-YunNan region, China[J]. Acta Seismologica Sinica (in Chinese), 27(5): 515-523.

    [14]

    14 Oruc B.2014. Structural interpretation of southern part of western Anatolian using analytic signal of the second order gravity gradients and discrete wavelet transform analysis[J]. Journal of Applied Geophysics, 103(4): 82-98.

    [15]

    15 Paoletti V, Fedi M, Italiano F, et al.2016. Inversion of gravity gradient tensor data: does it provide better resolution?[J]. Geophysical Journal International, 205(1): 192-202.

    [16]

    16 Qiu N, He Z C, Chang Y J.2007. Ability of improving gravity anomaly resolution based on Multiresolution wavelet analysis and power spectrum analysis[J]. Progress in Geophysics (in Chinese), 22(1): 112-120, doi: 10.3969/j.issn.1004-2903.2007.01.015.

    [17]

    17 Ren J P, Xu K K, Xiang Z Q, et al.2015. Geological characteristics, metallogenic model and prospecting criteria of the South Deep gold deposit in Witwatersrand Basin, South Africa[J]. Geological Bulletin of China (in Chinese), 34(6): 1217-1226.

    [18]

    18 Ren Z Y, Chen C J, Pan K J, et al.2017. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts[J]. Surveys in Geophysics, 38(2): 479-502.

    [19]

    19 Ren Z Y, Zhong Y Y, Chen C J, et al.2018. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts up to cubic order[J]. Geophysics, 83(1): G1-G13.

    [20]

    20 Spector A, Grant F S.1970. Statistical models for interpreting aeromagnetic data[J]. Geophysics, 35(2): 293-302.

    [21]

    21 Tang J T, Hu S G, Ren Z Y, et al.2017. Analytical formulae for underwater and aerial object localization by gravitational field and gravitational gradient tensor[J]. IEEE Geoscience and Remote Sensing Letters, 14(9): 1557-1560.

    [22]

    22 Tang J T, Hu S G, Ren Z Y, et al.2018. Localization of Multiple Underwater Objects With Gravity Field and Gravity Gradient Tensor[J]. IEEE Geoscience and Remote Sensing Letters, 15(2): 247-251.

    [23]

    23 Tian Y, Ke X P, Wang Y.2018. DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data[J]. Journal of Geophysics & Engineering, 15(2): 354-365.

    [24]

    24 Wu Q, Qin L L.2012. The trend analysis of separating regional gravity field and local field by using Matlab[J]. Gansu Geology(in Chinese), 21(2): 88-92.

    [25]

    25 Xu C, Liu Z W, Luo Z C, et al.2017. Moho topography of the Tibetan Plateau using multi-scale gravity analysis and its tectonic implications[J]. Journal of Asian Earth Sciences, 138: 378-386.

    [26]

    26 Xu Y, Hao T Y, Li Z W, et al.2009. Regional gravity anomaly separation using wavelet transform and spectrum analysis[J]. J. Geophys. Eng. 6(3): 279-287.

    [27]

    27 Yang W C, Shi Z Q, Hou Z Z.2001. Discrete wavelet transform for multiple decomposition of gravity anomalies[J]. Chinese Journal of Geophysics (in Chinese), 44(4): 534-541, doi: 10.3321/j.issn:0001-5733.2001.04.012.

    [28]

    28 陈国雄, 孙劲松, 刘天佑. 2012. GRACE卫星时变重力场的小波多尺度分解—以2008年汶川MS 8.0大地震为例[J]. 武汉大学学报: 信息科学版, 37(6): 679-682.

    [29]

    29 邸继征. 2010. 小波分析原理[M]. 北京: 科学出版社.

    [30]

    30 刁博, 王家林, 程顺有. 2007. 重力异常小波多分辨分析分解阶次的确定[J]. 地球科学-中国地质大学学报, 32(4): 564-568.

    [31]

    31 侯遵泽, 杨文采. 1997. 中国重力异常的小波变换与多尺度分析[J]. 地球物理学报, 40(1): 85-95.

    [32]

    32 李长波, 王良书, 孙斌. 2014. 松辽盆地布格重力异常小波多尺度分解与解释[J]. 高校地质学报, 20(02): 268-276.

    [33]

    33 李健, 周云轩, 许惠平. 2001. 重力场数据处理中小波母函数的选择[J]. 物探与化探, 25(6): 410-417.

    [34]

    34 刘芳, 祝意青, 陈石. 2013. 华北时变重力场离散小波多尺度分解[J]. 中国地震, 29(1): 124-131.

    [35]

    35 楼海, 王椿镛. 2005. 川滇地区重力异常的小波分解与解释[J]. 地震学报, 27(5): 515-523.

    [36]

    36 邱宁, 何展翔, 昌彦君. 2007. 分析研究基于小波分析与谱分析提高重力异常的分辨能力[J]. 地球物理学进展, 22(1): 112-120, doi: 10.3969/j.issn.1004-2903.2007.01.015.

    [37]

    37 任军平, 许康康, 相振群, 等. 2015. 南非维特沃特斯兰德盆地绍斯迪普金矿床地质特征、成矿模式和找矿模型[J]. 地质通报, 34(6): 1217-1226.

    [38]

    38 吴琼, 秦丽丽. 2012. 分离重力区域场与局部场的Matlab趋势分析法[J]. 甘肃地质, 21(2): 88-92.

    [39]

    39 杨文采, 施志群, 侯遵泽, 等. 2001. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 44(4): 534-541, doi: 10.3321/j.issn:0001-5733.2001.04.012.

  • 加载中
计量
  • 文章访问数:  348
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2019-01-12
修回日期:  2019-06-17
刊出日期:  2019-12-20

目录