基于双频高动态探地雷达技术的道路地下病害检测研究

曾雄鹰, 王佳龙, 梁晓东, 余涛, 黄小林. 2022. 基于双频高动态探地雷达技术的道路地下病害检测研究. 地球物理学进展, 37(5): 2225-2232. doi: 10.6038/pg2022FF0476
引用本文: 曾雄鹰, 王佳龙, 梁晓东, 余涛, 黄小林. 2022. 基于双频高动态探地雷达技术的道路地下病害检测研究. 地球物理学进展, 37(5): 2225-2232. doi: 10.6038/pg2022FF0476
ZENG XiongYing, WANG JiaLong, LIANG XiaoDong, YU Tao, HUANG XiaoLin. 2022. Research on road underground disease detection by dual-frequency GPR based on high-dynamic range technology. Progress in Geophysics, 37(5): 2225-2232. doi: 10.6038/pg2022FF0476
Citation: ZENG XiongYing, WANG JiaLong, LIANG XiaoDong, YU Tao, HUANG XiaoLin. 2022. Research on road underground disease detection by dual-frequency GPR based on high-dynamic range technology. Progress in Geophysics, 37(5): 2225-2232. doi: 10.6038/pg2022FF0476

基于双频高动态探地雷达技术的道路地下病害检测研究

详细信息
    作者简介:

    曾雄鹰, 男, 1977年生, 高级工程师, 研究方向为道路和隧道病害体探测图像分析.E-mail: 724482675@qq.com

    通讯作者: 王佳龙, 男, 1991年生, 工程师, 研究方向为物探方法在工程勘查中的应用.E-mail: 710636168@qq.com
  • 中图分类号: P631

Research on road underground disease detection by dual-frequency GPR based on high-dynamic range technology

More Information
  • 探地雷达(Ground Penetrating Radar, GPR)以其快速、无损和高分辨率等优势已被广泛应用于道路地下病害体的排查应用.针对传统时域单主频天线GPR在勘探深度和分辨率上的局限性,本文提出了一种基于双主频高动态GPR检测系统的道路地下病害检测方法,通过二维正演,模拟道路地下典型病害体的电磁响应,获得病害体的典型GPR特征图谱,为实际病害的客观判读和科学解译提供理论依据.并以某区道路地下病害的实测GPR数据为例,给出了双主频高动态GPR采集的参数设置及数据分析流程.钻探验证结果表明,高频回波信号对浅部薄层具有较高分辨率,能较清晰地识别3 m以上浅部病害体,低频回波信号具有较高信噪比,能有效识别3 m以下深部病害体,兼顾了探测深度和纵向分辨率的双主频GPR检测系统,能较好地识别地下病害类型、位置、埋深及影响范围,可为城市道路病害排查与防治提供技术支持.

  • 加载中
  • 图 1 

    三层道路结构示意图

    Figure 1. 

    Schematic diagram of third floor road structure

    图 2 

    不同填充类型的空洞正演模拟图

    Figure 2. 

    Forward modeling of cavities with different filling types

    图 3 

    不同大小的似圆形空洞病害体正演模拟结果

    Figure 3. 

    Forward simulation results of three diseases of circular cavities of different sizes

    图 4 

    不同形状的空洞病害体正演模拟结果

    Figure 4. 

    Forward modeling results of cavities with different shapes

    图 5 

    MALA双主频高动态雷达系统

    Figure 5. 

    Mala dual-frequency high dynamic GPR system

    图 6 

    空洞及疏松病害体双频探地雷达二维剖面图

    Figure 6. 

    Two dimensional profile of cavity and loose body by dual-frequency GPR

    图 7 

    空洞病害体双频探地雷达二维剖面图

    Figure 7. 

    Two dimensional profile of cavity disease by dual-frequency GPR

    图 8 

    脱空病害体双频探地雷达二维剖面图

    Figure 8. 

    Two dimensional profile of diseased body by dual-frequency GPR

    图 9 

    空洞病害钻井验证结果

    Figure 9. 

    Drilling verification results of cavity diseas

    表 1 

    路面地下不同病害体的探地雷达特征

    Table 1. 

    The characteristics of GPR for different diseases on pavement underground

    病害体类型 振幅强度 相位 雷达图像特征
    空洞 整体振幅强 顶部反射波与入射波同向 多次波发育,绕射波明显
    脱空 整体振幅强 顶部反射波与入射波同向 多次波发育,存在明显的同相轴脱落特征
    疏松体 整体振幅强 顶部反射波与入射波同向 波形杂乱,同相轴错乱,多次反射较明显
    富水体 顶部振幅强,能量衰减迅速 顶部反射波与入射波反向 顶部形成连续的反射波组,同相轴连续,反射能量较强,能量衰减较快
    下载: 导出CSV
  •  

    Chen C Y, Xiao M, Jia H, et al. 2013. The genesis of urban underground roads diseases and classification of engineer. Bulletin of Surveying and Mapping (in Chinese), (S2): 5-9.

     

    Guo S L, Duan J X, Zhang J F, et al. 2019. Application of GPR in urban road hidden diseases detection. Progress in Geophysics (in Chinese), 34(4): 1609-1613, doi: 10.6038/pg2019CC0438.

     

    Guo S L, Xu L, Li X Z. 2018. Application of GPR in detection of road surface settlement. Progress in Geophysics (in Chinese), 33(3): 1213-1217, doi: 10.6038/pg2018BB0341.

     

    Hu Y H, Bai Y C, Xu H J. 2016. Analysis of reasons for urban road collapse and prevention and control countermeasures in recent decade of China. Highway (in Chinese), 61(9): 130-135. doi: 10.3969/j.issn.1006-3897.2016.09.028

     

    Lan Z P, Xin X M, Guo Z Y. 2009. Application of multi-channel transient Rayleigh wave in Highway Survey in Anhui Province. Mining Technology (in Chinese), 9(6): 40-41. doi: 10.3969/j.issn.1671-2900.2009.06.018

     

    Lei L J. 2013. The causes of urban roads collapse and detection of hidden trouble. Bulletin of Surveying and Mapping (in Chinese), (S2): 254-255.

     

    Li W L, Huang Z P, Wang F X, et al. 2015. The comparison between transient surface wave and micro-seismic wave exploration technology. Chinese Journal of Engineering Geophysics (in Chinese), 12(1): 96-100, doi: 10.3969/j.issn.1672-7940.2015.01.018.

     

    Liang X Q, Yang D X, Zhang K N, et al. 2017. Application of FDTD numerical simulation of Ground Penetrating Radar inpipeline detection. Progress in Geophysics (in Chinese), 32(4): 1803-1807, doi: 10.6038/pg20170453.

     

    Ma Y H, Zheng W Q, Chi X S. 2020. Forward simulation of ground penetration radar based on GPRSIM for the road underground disasters. Science Technology and Engineering (in Chinese), 20(22): 8898-8903. doi: 10.3969/j.issn.1671-1815.2020.22.007

     

    Tao L J, Yuan S, An J H. 2015. Development mechanism of cavity damage under urban roads and its influence on road surface subsidence. Journal of Heilongjiang University of Science & Technology (in Chinese), 25(3): 289-293, doi: 10.3969/j.issn.2095-7262.2015.03.013.

     

    Wang C, Lin Z R, Li J. 2021. Application of Hilbert-Huang transform in detecting the quality of roadbed by ground penetrating radar. Progress in Geophysics (in Chinese), 36(4): 1711-1716, doi: 10.6038/pg2021EE0173.

     

    Wang C H, Hu T H, Cui H T, et al. 2013. The innovation and practice of ground penetrating radar technology used for disasters investigation especially for underground cavity or collapse detection. Bulletin of Surveying and Mapping (in Chinese), (S2): 13-16, 32.

     

    Wu J M, Weng W F, Ha W, et al. 2019. Nondestructive high-density electrical method, was applied to the detection of ditches in the city. Gansu Metallurgy (in Chinese), 41(2): 97-98, doi: 10.16042/j.cnki.cn62-1053/tf.2019.02.025.

     

    Xi Z Z, Long X, Zhou S, et al. 2016. Opposing Coils transient electromagnetic method for shallow subsurface detection. Chinese J. Geophys. (in Chinese), 59(9): 3428-3435, doi: 10.6038/cjg20160925.

     

    Xiao M, Chen C Y, Jia H, et al. 2016. The study of the interference region around metal pipeline in underground disease detection of urban road. Geophysical and Geochemical Exploration (in Chinese), 40(5): 1046-1050, doi: 10.11720/wtyht.2016.5.33.

     

    Xue G X, Wang P. 2006. The Application of the FDTD method to GPR simulation. Geophysical and Geochemical Exploration (in Chinese), 30(3): 244-246. doi: 10.3969/j.issn.1000-8918.2006.03.014

     

    Yan K, Zhang Z H, Wen Y N. 2021. Research on texture feature extraction method of the ground-penetrating radar image of the pavement base. Progress in Geophysics (in Chinese), 36(5): 2234-2243, doi: 10.6038/pg2021EE0423.

     

    Yang B S, Zong Z L, Chen C, et al. 2020. Real time approach for underground objects detection from vehicle-borne ground penetrating radar. Acta Geodaetica et Cartographica Sinica (in Chinese), 49(7): 874-882.

     

    Yin G H, Feng Y N, Zhang H K, et al. 2016. Forward simulation of ground penetration radar based on the GprMax for the roadbed cavity. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 38(4): 480-486, doi: 10.3969/j.issn.1001-1749.2016.04.07.

     

    Zhang D S, Yang B N, Shen X Q, et al. 2020. The effect of high-density resistivity method on collapse measurement in karst area of Guizhou Province. Chinese Journal of Engineering Geophysics (in Chinese), 17(1): 31-37, doi: 10.3969/j.issn.1672-7940.2020.01.005.

     

    Zhang Q, Zhou J, Li K P. 2018. Application of ground penetrating radar (GPR) and shallow high precision transient electromagnetic (TEM) method in disease exploration of existing expressways. Resource Information and Engineering (in Chinese), 33(5): 117-118, 121, doi: 10.19534/j.cnki.zyxxygc.2018.05.055.

     

    陈昌彦, 肖敏, 贾辉, 等. 2013. 城市道路地下病害成因及基于综合探测的工程分类探讨. 测绘通报, (S2): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2013S2003.htm

     

    郭士礼, 段建先, 张建锋, 等. 2019. 探地雷达在城市道路塌陷隐患探测中的应用. 地球物理学进展, 34(4): 1609-1613, doi: 10.6038/pg2019CC0438. http://www.progeophys.cn/article/doi/10.6038/pg2019CC0438

     

    郭士礼, 许磊, 李修忠. 2018. 探地雷达在公路路面变形沉降检测中的应用. 地球物理学进展, 33(3): 1213-1217, doi: 10.6038/pg2018BB0341. http://www.progeophys.cn/article/doi/10.6038/pg2018BB0341

     

    胡聿涵, 白玉川, 徐海珏. 2016. 近10年中国城市道路塌陷原因及防治对策分析. 公路, 61(9): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201609036.htm

     

    兰中平, 辛小毛, 郭正严. 2009. 多道瞬态瑞雷面波在安徽省公路勘察中的应用. 采矿技术, 9(6): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK200906018.htm

     

    雷六斤. 2013. 城市道路塌陷的成因及隐患探查. 测绘通报, (S2): 254-255. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2013S2082.htm

     

    李文灵, 黄真萍, 王福喜, 等. 2015. 瞬态面波与微震波波动勘测法的分析与对比. 工程地球物理学报, 12(1): 96-100, doi: 10.3969/j.issn.1672-7940.2015.01.018.

     

    梁小强, 杨道学, 张可能, 等. 2017. FDTD数值模拟在GPR管线探测中的应用. 地球物理学进展, 32(4): 1803-1807, doi: 10.6038/pg20170453. http://www.progeophys.cn/article/doi/10.6038/pg20170453

     

    马永辉, 郑文青, 迟晓双. 2020. 基于GPRSIM的道路地下病害体探地雷达正演模拟研究. 科学技术与工程, 20(22): 8898-8903. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202022007.htm

     

    陶连金, 袁松, 安军海. 2015. 城市道路地下空洞病害发展机理及对路面塌陷的影响. 黑龙江科技大学学报, 25(3): 289-293. doi: 10.3969/j.issn.2095-7262.2015.03.013.

     

    王超, 林振荣, 李洁. 2021. HHT在探地雷达检测路基质量中的应用. 地球物理学进展, 36(4): 1711-1716, doi: 10.6038/pg2021EE0173. http://www.progeophys.cn/article/doi/10.6038/pg2021EE0173

     

    王春和, 胡通海, 崔海涛, 等. 2013. 探地雷达技术用于地下空洞塌陷灾害探测的创新与实践. 测绘通报, (S2): 13-16, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2013S2005.htm

     

    吴冀明, 翁望飞, 哈文, 等. 2019. 无损高密度电法在城市沟渠探测中的应用. 甘肃冶金, 41(2): 97-98, doi: 10.16042/j.cnki.cn62-1053/tf.2019.02.025.

     

    席振铢, 龙霞, 周胜, 等. 2016. 基于等值反磁通原理的浅层瞬变电磁法. 地球物理学报, 59(9): 3428-3435, doi: 10.6038/cjg20160925.

     

    肖敏, 陈昌彦, 贾辉, 等. 2016. 金属管线对探地雷达探测道路地下病害的干扰. 物探与化探, 40(5): 1046-1050, doi: 10.11720/wtyht.2016.5.33.

     

    薛桂霞, 王鹏. 2006. 探地雷达时域有限差分法正演模拟. 物探与化探, 30(3): 244-246. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200603013.htm

     

    闫坤, 张志华, 温亚楠. 2021. 路面基层探地雷达图像纹理特征提取方法研究. 地球物理学进展, 36(5): 2234-2243, doi: 10.6038/pg2021EE0423. http://www.progeophys.cn/article/doi/10.6038/pg2021EE0423

     

    杨必胜, 宗泽亮, 陈驰, 等. 2020. 车载探地雷达地下目标实时探测法. 测绘学报, 49(7): 874-882. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202007009.htm

     

    尹光辉, 冯雨宁, 张怀凯, 等. 2016. 基于GprMax软件的道路路基空洞探地雷达正演模拟. 物探化探计算技术, 38(4): 480-486, doi: 10.3969/j.issn.1001-1749.2016.04.07.

     

    张德实, 杨炳南, 沈小庆, 等. 2020. 高密度电阻率法在贵州岩溶地区塌陷测量效果探讨. 工程地球物理学报, 17(1): 31-37, doi: 10.3969/j.issn.1672-7940.2020.01.005.

     

    张琦, 周杰, 李坤鹏. 2018. 地质雷达与浅层高精度瞬变电磁法在既有高速公路病害勘查中的应用. 资源信息与工程, 33(5): 117-118, 121, doi: 10.19534/j.cnki.zyxxygc.2018.05.055.

  • 加载中

(9)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-01-08
修回日期:  2022-05-16
刊出日期:  2022-10-20

目录