土体电阻率模型研究现状综述

徐兴倩, 蔡波, 屈新, 曾梓凡, 赵熹. 2022. 土体电阻率模型研究现状综述. 地球物理学进展, 37(5): 2205-2217. doi: 10.6038/pg2022FF0531
引用本文: 徐兴倩, 蔡波, 屈新, 曾梓凡, 赵熹. 2022. 土体电阻率模型研究现状综述. 地球物理学进展, 37(5): 2205-2217. doi: 10.6038/pg2022FF0531
XU XingQian, CAI Bo, QU Xin, ZENG ZiFan, ZHAO Xi. 2022. Review of soil resistivity model. Progress in Geophysics, 37(5): 2205-2217. doi: 10.6038/pg2022FF0531
Citation: XU XingQian, CAI Bo, QU Xin, ZENG ZiFan, ZHAO Xi. 2022. Review of soil resistivity model. Progress in Geophysics, 37(5): 2205-2217. doi: 10.6038/pg2022FF0531

土体电阻率模型研究现状综述

  • 基金项目:

    国家自然科学基金项目(41867040)和云南省基础研究计划面上基金项目(202101AT070271)联合资助

详细信息
    作者简介:

    徐兴倩, 男, 1985年生, 博士, 副教授, 硕士生导师, 研究方向为滑坡地质结构特征及形成机理分析.E-mail: xuxingqian_123@163.com

    通讯作者: 赵熹, 男, 1987年生, 博士, 讲师, 研究方向为工程抗震.E-mail: zhaoxi426@foxmail.com
  • 中图分类号: P631

Review of soil resistivity model

More Information
  • 本文从土体的导电性和Archie公式着手介绍了电阻率基本理论,调查了目前土体电阻率的主要测定方法以及常见的仪器设备,深入分析了土体电阻率的主要影响因素,对多种土体的电阻率模型及其应用现状进行归纳总结.结果表明,国内外区域性特殊土类电阻率模型构建研究较少,已有的不同土类电阻率模型使用参数存在较大差异,缺乏统一的电阻率测试方法,基于电阻率测试的土体物理力学性质的定量化评价研究不够深入,旨在为土体电阻率模型构建相关研究提供参考.

  • 加载中
  • 图 1 

    在孔隙率为50%时三种土的含水率与电阻率的关系(刘国华等,2004)

    Figure 1. 

    The relationship between water content and resistivity of the three soils when the porosity is 50% (Liu et al., 2004)

    图 2 

    三种土的含水率与电阻的关系(孙旭等,2019)

    Figure 2. 

    The relationship between moisture content and electrical resistance othree types of soils (Sun et al., 2019)

    图 3 

    饱和度对标准砂电阻率的影响(孙旭等,2019)

    Figure 3. 

    The influence of saturation on the resistivity of standard sand (Sun et al., 2019)

    图 4 

    饱和度对砂土、淤泥和黏土电阻率的影响(Rhoades et al., 1977)

    Figure 4. 

    The effect of saturation on the resistivity of sand, silt and clay (Rhoades et al., 1977)

    图 5 

    不同类型土的土体的导电性(Palacky,1987)

    Figure 5. 

    Soil conductivity of differenttypes of soil(Palacky, 1987)

    图 6 

    不同结构类型土的结构因子比较

    Figure 6. 

    Comparison of structural factors of different structural types of soil(Fukue et al., 1999)

    图 7 

    黏性土中电流的三种流通路径示意图(查甫生等,2007)

    Figure 7. 

    Schematic diagram of three flow paths of current in cohesive soil(Zha et al., 2007)

    表 1 

    三种常见的电阻率测试仪器

    Table 1. 

    Three common resistivity test instruments

    设备名称 示意图 优点 来源
    固结仪电阻率测试装置   在固结仪的基础上,分别在试样的顶部和底部安装电极,从而可在固结过程中测得两电极间的电势差. Fukue等(1999)
    Miller Soil Box优化装置   对Miller Soil Box进行改进,不需要对测试得到的视电阻率进行换算,可直接测定土体电阻率. 刘国华等(2004)
    ESEU-1型土电阻率测试仪   具备交流、低频、二项电极,能够与土工测试仪器较好搭配使用. 刘松玉等(2006)
    下载: 导出CSV

    表 2 

    砂土电阻率模型

    Table 2. 

    Sandy soil resistivity model

    模型类别 电阻率模型 应用条件及研究结论 来源
    多参数模型 适用于饱和无黏性土,最简化的电阻率模型 Archie (1942)
    适用于非饱和无黏性砂土 Keller和Frischknecht (1966)

    其中,ρ0为污染土电阻率,F为地层结构因子,S0为混合孔液饱和度,n为饱和度指数,ρr为渗滤液电阻率,AB为土体初始饱和度,CD为渗滤液稀释公式系数,N为渗滤液稀释倍数
    在Archie公式基础上,建立的污染砂土电阻率模型 马媛媛等(2010)
    考虑了孔隙水电阻率、孔隙率以及饱和度的电阻率模型 王炳辉等(2017)
    区域统计模型 原状砂土:
    相对电阻率:P=ρw/ρr=CN+D=0.79N+0.29
    其中,ρ0为土体电阻率,Sw为含水饱和度,P为相对电阻率(混合液电阻率和初始渗滤液电阻率比值),N为稀释后混合液体积.
    将电阻率与饱和度和孔隙水建立的关系式 郭秀军等(2012)
    ρ0=φ-mρw=φ0.25Ln(N)-2.05(0.57N+2.77)ρr
    其中,ρ0为砂土体电阻率,ϕ为孔隙度,m为胶结指数,N为稀释倍数,ρr为原始渗滤液电阻率.
    城市生活垃圾渗滤液污染砂土的电阻率模型 吴水娟(2012)
    F=(1.028+0.096lgfn·exp(-1.57+1.028lgf)其中,f为电流频率. 描述了结构因子、电流频率和孔隙率的电阻率模型 刘晓凤等(2014)
    多项混合模型
    其中,a1=γgγwa2=γga3=γgγwγs为土颗粒均质材料的电阻率,γg为气相电阻率,γw为液相电阻率,Dr为密实度.
    考虑了饱和度和密实度的耦合关系所建立的电阻率模型 贺瑞等(2019)
    下载: 导出CSV

    表 3 

    黏土电阻率模型

    Table 3. 

    Resistivity model of cohesive soil

    模型类别 电阻率模型 应用条件及研究结论 来源
    多参数模型 非饱和黏性土的电阻率模型 Waxman和Smits (1968)

    其中,ρswa为两极间土体的电阻率,ds为土粒体积质量
    黏性土三相电阻率模型 龚晓南等(2011)
    串并联模型
    其中,θ为土水并联部分的水-土体积比.
    在三种电流传播路径基础上,建立的非饱和黏性土的电阻率模型 查甫生等(2007)
    区域统计模型 qu=0.004e(ρ0/75.65)+36.65R2=0.98768
    qu=1.1e(ρ1/9.3)+36.785, R2=0.96614
    其中,qu为无侧限抗压强度,ρ0为初始电阻率,ρ1为破坏电阻率,R2为相关系数
    不同干湿循环下红黏土无侧限抗压强度与初始电阻率和破坏电阻率的关系式 陈议城等(2020a)
    ρ=158114.79N-1.17w-3.32n1.83
    其中,N为土体受污染程度.
    电阻率与含水率、孔隙率以及污染程度的拟合公式 陈议城等(2020b)
    下载: 导出CSV

    表 4 

    黄土电阻率模型

    Table 4. 

    Loess resistivity model

    模型类别 电阻率模型 应用条件及研究结论 来源
    区域统计模型
    其中,ρ为土在非饱和状态下的电阻率,ρsat为饱和状态下的电阻率,B为经验参数.
    含水率不变的情况下,电阻率与饱和度之间的关系式 刘志彬等(2013)

    其中,ρ/ρw为结构因子.
    非饱和黄土的电阻率模型 董晓强等(2015a)
    多参数模型
    其中,ρdmax为最大干密度,G为相对密度,k为压实度.
    含水率和密实度与电阻率之间的关系式 朱才辉和李宁(2013)
    下载: 导出CSV

    表 5 

    膨胀土电阻率模型

    Table 5. 

    Resistivity model of expansive soil

    模型类别 电阻率模型 应用条件及研究结论 来源
    多参数模型 饱和土:
    非饱和土:
    其中,ρsat为饱和土的电阻率,ρs为土骨架的电阻率,ρunsat为非饱和土的电阻率.
    饱和、非饱和土的电阻率模型 缪林昌等(2007)

    其中,Er为综合电阻率指标,A为各向异性系数,F为平均归一化电阻率,ϕ-m为土体电阻率的孔隙率指标.
    综合电阻率指标用于膨胀土的结构分析 储亚等(2017)
    区域统计模型 电阻率与孔隙度和饱和度的关系式 Yan等(2012)

    其中,ρ初始为初始电阻率.
    不同含水率下,无限抗压强度与电阻率之间的关系 吴道祥等(2016)
    下载: 导出CSV

    表 6 

    冻土电阻率模型

    Table 6. 

    Resistivity model of frozen soil

    模型类别 电阻率模型 应用条件及研究结论 来源
    区域统计模型 未冻水含量:
    未冻冰含量:
    其中, ρuw0为未冻水的电阻率, ρi0为冰的电阻率, 为冰含量wuw为未冻水含量, wi为冰含量, a为电阻率与含冰量幂律的指数.
    未扰动冻土的电阻率与未冻水含量和未冻冰含量关系式 Fortier等(2008)
    不同温度下冻土单轴抗压强度与初始电阻率的拟合式 付伟等 (2009)

    其中, Kibi为与土壤颗粒、未冻水或冰晶电导率有关的系数, θu为冻土未冻水含量.
    冻土在整个冻结阶段的电阻率模型 Tang等(2018)
    多相混合模型
    其中, ABCD为系数相关的冻土的结构特性和电阻率的每个组件的冻土, w为冻土的含水量, -b为冻土的未冻水水含量, θ为冻土温度的绝对值, ρd为冻土的干密度.
    考虑了冻土各部分电阻率系数的冻土电阻率模型 Shan等(2015)
    下载: 导出CSV

    表 7 

    水泥土电阻率模型

    Table 7. 

    Resistivity model of cement-soil

    模型类别 电阻率模型 应用条件及研究结论 来源
    多参数模型
    其中,δ为收缩度,m为常数.
    将水泥土的电阻率与孔隙率和收缩度相结合 Tumidajski等(1996)

    其中,ab为经验参数,wpb为铅含量.
    水泥固化重金属铅污染土的电阻率模型 章定文等(2015)
    区域统计模型
    其中,ρs(y)Dρs(x)1分别为龄期D和龄期1 d的水泥土电阻率值,(x)1、(y)D分别为龄期1 d和D的NaOH溶液浓度,ABC为常数,D为龄期.
    受NaOH浸泡的水泥土电阻率预测公式 董晓强等(2007)
    该模型考虑了水泥掺入量、龄期对电阻率的影响 Zhang等(2012)
    普通硅酸盐水泥土:
    矿渣硅酸盐水泥土:
    两种水泥土电阻率与无限抗压强度关系 董晓强等(2015b)
    预测固化污染土的无限抗压强度 查甫生等(2019)
    串并联模型 串联:
    并联:
    其中,dsgsdsgp分别为串联和并联模型的水泥土的电阻率,dg为水泥的电阻率,dw为孔隙水的电阻率,ds为土颗粒电阻率,λ为水泥掺合比.
    通过电阻率与无线抗压强度的测试,建立水泥土电阻率串、并联模型 缪林昌等(2001ab)
    下载: 导出CSV

    表 8 

    盐渍土电阻率模型

    Table 8. 

    Resistivity model of saline soil

    模型类别 电阻率模型 应用条件及研究结论 来源
    区域统计模型 盐渍土的电阻率关于含水率的拟合公式 李玲等(2012)
    测出电阻率值根据拟合公式,进而反算土体含盐量 王乐凡等(2014)

    其中,P为钠盐含量.
    钠盐盐渍土的电阻率模型 罗述伟(2019)
    下载: 导出CSV
  •  

    Abu-Hassanein Z S, Benson C H, Blotz L R. 1996. Electrical resistivity of compacted clays. Journal of Geotechnical Engineering, 122(5): 397-406, doi: 10.1061/(ASCE)0733-9410(1996)122:5(397).

     

    Archie G E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME, 146(1): 54-62, doi: 10.2118/942054-G.

     

    Bai L, Zhou Z H, Zhang H Y, et al. 2008. Analysis the resistivity characteristics of contaminated soil. Environmental Engineering (in Chinese), 26(2): 66-69.

     

    Chen Y C, Huang X, Chen X J, et al. 2020a. Relationship between unconfined compressive strength and electrical resistivity of red clay under dry and wet cycles. Journal of Guangxi University (Natural Science Edition) (in Chinese), 45(6): 1267-1275, doi: 10.13624/j.cnki.issn.1001-7445.2020.1267.

     

    Chen Y C, Song Y, Chen X J, et al. 2020b. Resistivity characteristics of red clay contaminated by Cu2+. Rock and Soil Mechanics (in Chinese), 41(S2): 1-10, doi: 10.16285/j.rsm.2020.0137.

     

    Chu Y, Zha F S, Liu S Y, et al. 2017. Evaluation of expansibility of expansive soil using resistivity method. Rock and Soil Mechanics (in Chinese), 38(1): 157-164, doi: 10.16285/j.rsm.2017.01.020.

     

    Dong X Q, Bai X H, Zhao Y Q, et al. 2007. Study on electrical resistivity of soil-cement polluted by NaOH. Chinese Journal of Geotechnical Engineering (in Chinese), 29(11): 1715-1719. doi: 10.3321/j.issn:1000-4548.2007.11.020

     

    Dong X Q, Huang F F, Su N N, et al. 2015a. Experimental study of AC electrical resistivity of unsaturated loess during compression. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 34(1): 189-197, doi: 10.13722/j.cnki.jrme.2015.01.021.

     

    Dong X Q, Song Z W, Zhang S H, et al. 2016. Application study of electrical resistivity characteristics of core samples from soil-cement mixing piles. China Civil Engineering Journal (in Chinese), 49(10): 88-94, doi: 10.15951/j.tmgcxb.2016.10.013.

     

    Dong X Q, Zhang S H, Su N N, et al. 2015b. Effects of contaminated soil on electrical resistivity and strength of cemented soil. China Civil Engineering Journal (in Chinese), 48(4): 91-98, doi: 10.15951/j.tmgcxb.2015.04.014.

     

    Fortier R, LeBlanc A M, Allard M, et al. 2008. Internal structure and conditions of permafrost mounds at Umiujaq in Nunavik, Canada, inferred from field investigation and electrical resistivity tomography. Canadian Journal of Earth Sciences, 45(3): 367-387, doi: 10.1139/E08-004.

     

    Fu W. 2009. Experimental study on electrical resistivity characteristics of silty clay under uniaxial compression and frozen-thaw cycles[Ph. D. thesis](in Chinese). Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.

     

    Fu W, Wang R, Hu M J, et al. 2009. Study of relationship between uniaxial compressive strength and electrical resistivity of frozen soil under different temperatures. Rock & Soil Mechanics (in Chinese), 30(1): 73-78.

     

    Fukue M, Minato T, Horibe H, et al. 1999. The micro-structures of clay given by resistivity measurements. Engineering Geology, 54(1-2): 43-53, doi: 10.1016/S0013-7952(99)00060-5.

     

    Gong X N, Jiao D, Li Y. 2011. Electric resistance calculation model of clay. Journal of Shenyang University of Technology (in Chinese), 33(2): 213-218.

     

    Guo X J, Wu S J, Ma Y Y. 2012. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method. Chinese Journal of Geotechnical Engineering (in Chinese), 34(11): 2066-2071.

     

    Han L H, Liu S Y, Du Y J. 2007. Experiment study on effect of temperature on electrical resistivity of contaminated soils. Rock & Soil Mechanics (in Chinese), 28(6): 1151-1155. doi: 10.3969/j.issn.1000-7598.2007.06.016

     

    Huang F F, Zhou W, Liu Y Z, et al. 2015. Experimental study on electrical resistivity of loess solidified by sodium silicate. Journal of Guangxi University (Natural Science Edition) (in Chinese), 40(1): 213-219, doi: 10.13624/j.cnki.issn.1001-7445.2015.0213.

     

    Huntley D. 1986. Relations between permeability and electrical resistivity in granular aquifers. Ground Water, 24(4): 466-474, doi: 10.1111/j.1745-6584.1986.tb01025.x.

     

    Jiang J F, Yu C, Liao R P, et al. 2018. Tests on electrical resistivity characteristics of Wenzhou soft clay with Cu2+. Journal of Civil, Architectural & Environmental Engineering (in Chinese), 40(6): 85-90, doi: 10.11835/j.issn.1674-4764.2018.06.012.

     

    Kalinski R J, Kelly W E. 1993. Estimating water content of soils from electrical resistivity. Geotechnical Testing Journal, 16(3): 323, doi: 10.1520/GTJ10053J.

     

    Kalinski R J, Kelly W E. 1994. Electrical-resistivity measurements for evaluating compacted-soil liners. Journal of Geotechnical Engineering, 120(2): 451-457, doi: 10.1061/(ASCE)0733-9410(1994)120:2(451).

     

    Keller G V, Frischknecht F C. 1966. Electrical Methods in Geophysical Prospecting. New York: Pergamon Press.

     

    Komine H. 1997. Evaluation of chemical grouted soil by electrical resistivity. Proceedings of the Institution of Civil Engineers-Ground Improvement, 1(2): 101-113, doi: 10.1680/gi.1997.010203.

     

    Li B, Liu S C, Cao Y M, et al. 2018. Study on the resistivity measurement of soil based on different test methods. Bulletin of Science and Technology (in Chinese), 34(9): 99-103, doi: 10.13774/j.cnki.kjtb.2018.09.020.

     

    Li L, Zhou Z H, Zhang H Y. 2012. Research on electrical resistivity test of saline soil. Environmental Engineering (in Chinese), 30(S2): 498-503, doi: 10.13205/j.hjgc.2012.s2.026.

     

    Liao Y S, Wei X S, Zuo Y B. 2014. Effect of fly ash content on electrical resistivity and autogenous shrinkage of cement paste. Journal of Building Materials (in Chinese), 17(3): 517-520, doi: 10.3969/j.issn.1007-9629.2014.03.026.

     

    Liu G H, Wang Z Y, Huang J P. 2004. Research on electrical resistivity feature of soil and it's application. Chinese Journal of Geotechnical Engineering (in Chinese), 26(1): 83-87. doi: 10.3321/j.issn:1000-4548.2004.01.016

     

    Liu S Y, Zha F S, Yu X J. 2006. Laboratory measurement techniques of the electrical resistivity of soils. Journal of Engineering Geology (in Chinese), 14(2): 216-222. doi: 10.3969/j.issn.1004-9665.2006.02.013

     

    Liu X F, Qiu B, Liu D, et al. 2014. On ac resistivity characteristics of saturated sand. Journal of Taiyuan University of Technology (in Chinese), 45(5): 653-656. doi: 10.3969/j.issn.1007-9432.2014.05.017

     

    Liu Y. 2015. Esablishment and experimental study of frozen soil resistivity model[Master's thesis](in Chinese). Harbin: Northeast Forestry University.

     

    Liu Z B, Zhang Y, Fang W, et al. 2013. Experimental research on relationship between electrical resistivity and compactibility of loess. Journal of Xi'an University of Science and Technology (in Chinese), 33(1): 84-90. doi: 10.3969/j.issn.1672-9315.2013.01.016

     

    Luo S W. 2019. Analysis of the electrical resistivity characteristics of sodium salt saline soil[Master's thesis](in Chinese). Yangling: Northwest A #38;F University.

     

    Ma Y Y, Guo X J, Zhu D W, et al. 2010. Investigation on electrical resistivity of soils by contaminated domestic landfill-leachate. Progress in Geophysics (in Chinese), 25(3): 1098-1104, doi: 10.3969/j.issn.1004-2903.2010.03.051.

     

    Miao L C, Liu S Y, Yan C H. 2001a. Application of the electrical resistivity method for examining the construction quality of DJM piles. Building Structure (in Chinese), 31(8): 63-65.

     

    Miao L C, Liu S Y, Yan M L, et al. 2000. Research on the features of resistivity of cement soil. Geotechnical Investigation & Surveying (in Chinese), (5): 32-34.

     

    Miao L C, Liu S Y, Yan M L. 2001b. Research on electrical resistivity feature of cement-soil and it's application. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 20(1): 126-130, doi: 10.3321/j.issn:1000-6915.2001.01.028.

     

    Miao L C, Yan M L, Cui Y. 2007. Studies on electrical resistivity of remold expansive soils. Chinese Journal of Geotechnical Engineering (in Chinese), 29(9): 1413-1417. doi: 10.3321/j.issn:1000-4548.2007.09.022

     

    Michot D, Benderitter Y, Dorigny A, et al. 2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5): 11385, doi: 10.1029/2002wr001581.

     

    Mitchell J K. 1976. Fundamentals of soil behavior. Soil Science Society of America Journal, 40(4): iv, doi: 10.2136/sssaj1976.03615995004000040003x.

     

    Mosleh A T, Al-Obaidy N K. 2021. A critical review on expansive soils including the influence of hydrocarbon pollution and the use of electrical resistivity to evaluate their properties. IOP Conference Series: Materials Science and Engineering, 1076(1): 012097, doi: 10.1088/1757-899X/1076/1/012097.

     

    Nai C X, Sun X C, Wang Z Y, et al. 2019. Complex resistivity characteristics of saltwater-intruded sand contaminated by heavy metal. Scientific Reports, 9: 10944, doi: 10.1038/s41598-019-47167-8.

     

    Palacky G J. 1987. Clay mapping using electromagnetic methods. First Break, 5(8): 295-306, doi: 10.3997/1365-2397.1987015.

     

    Rhoades J D, Kaddah M T, Halvorson A D, et al. 1977. Establishing soil electrical conductivity-salinity calibrations using four-electrode cells containing undisturbed soil cores. Soil Science, 123(3): 137-141, doi: 10.1097/00010694-197703000-00001.

     

    Rhoades J D, Raats P A C, Prather R J. 1976. Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Science Society of America Journal, 40(5): 651-655, doi: 10.2136/sssaj1976.03615995004000050017x.

     

    Sen P N, Goode P A. 1992. Influence of temperature on electrical conductivity on shaly sands. Geotechnical Physics, 57(1): 89-96.

     

    Shan W, Liu Y, Hu Z G, et al. 2015. A model for the electrical resistivity of frozen soils and an experimental verification of the model. Cold Regions Science and Technology, 119: 75-83, doi: 10.1016/j.coldregions.2015.07.010.

     

    Shen J W, Wan S, Liu S Y, et al. 2021. Experimental study on the effect of zinc pollution on drying shrinkage and resistivity of purple soil. Rock and Soil Mechanics (in Chinese), 42(3): 656-664, doi: 10.16285/j.rsm.2020.1225.

     

    Su N N. 2015. Study on electrical resistivity structure parameters of loess during consolidation[Master's thesis](in Chinese). Taiyuan: Taiyuan University of Technology.

     

    Su N N, Zhou W, Yang B, et al. 2015. Study on changes of electrical resistivity parameters of loess during consolidation. China Sciencepaper (in Chinese), 10(1): 100-104, 114, doi: 10.3969/j.issn.2095-2783.2015.01.023.

     

    Sun X, Yang Q Y, Gao L, et al. 2019. Effect of humidity change on soil resistivity. Geotechnical Investigation & Surveying (in Chinese), 47(1): 35-40.

     

    Tang L Y, Wang K, Jin L, et al. 2018. A resistivity model for testing unfrozen water content of frozen soil. Cold Regions Science and Technology, 153: 55-63, doi: 10.1016/j.coldregions.2018.05.003.

     

    Tumidajski P J, Schumacher A S, Perron S, et al. 1996. On the relationship between porosity and electrical resistivity in cementitious systems. Cement and Concrete Research, 26(4): 539-544, doi: 10.1016/0008-8846(96)00017-8.

     

    Wang B H, Wang Z H, Jiang P M, et al. 2017. Electrical resistivity characteristics of saturated sand with varied porosities. Chinese Journal of Geotechnical Engineering (in Chinese), 39(9): 1739-1745, doi: 10.11779/CJGE201709024.

     

    Wang K. 2019. Theoretical and experimental study on the resistivity method in testing unfrozen water content of frozen soil[Master's thesis](in Chinese). Xi'an: Xi'an University of Science and Technology.

     

    Wang L F, Yu C H, Gu Q K, et al. 2014. A study of resistive experiment on saturated saline soil with different salinity. Journal of Air Force Engineering University (Natural Science Edition) (in Chinese), 15(4): 25-28, doi: 10.3969/j.issn.1009-3516.2014.04.007.

     

    Wang T Y, Hao Z R, Yao X, et al. 2019. Study on stress-strain-resistivity of lime soil modified by red mud. Bulletin of the Chinese Ceramic Society (in Chinese), 38(5): 1591-1596, 1603, doi: 10.16552/j.cnki.issn1001-1625.2019.05.048.

     

    Waxman M H, Smits L J M. 1968. Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8(2): 107-122, doi: 10.2118/1863-A.

     

    Worthington R F. 1985. The evolution of shaly-sand concepts in reservoir evaluation. Log Analyst, 26(1): 23-40.

     

    Wu D X, Xiong F C, Guo J F, et al. 2016. Unconfined compressive strength and resistivity test of expansive soil with different water content. Journal of Hefei University of Technology (Natural Science) (in Chinese), 39(12): 1688-1692, doi: 10.3969/j.issn.1003-5060.2016.12.019.

     

    Wu S J. 2012. The study and application of the electrical resistivity model of sand soil polluted by landfill-leachate[Master's thesis](in Chinese). Qingdao: Ocean University of China.

     

    Xiao H. 2020. Experimental study on resistivity characteristic of sand with different satruation[Master's thesis](in Chinese). Xuzhou: China University of Mining and Technology.

     

    Yan M L, Miao L C, Cui Y. 2012. Electrical resistivity features of compacted expansive soils. Marine Georesources & Geotechnology, 30(2): 167-179, doi: 10.1080/1064119X.2011.602384.

     

    Yoon G, Oh M, Park J. 2002. Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer. Environmental Geology, 43(1): 18-28, doi: 10.1007/s00254-002-0649-1.

     

    Yoon G L, Park J B. 2001. Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils. Journal of Hazardous Materials, 84(2-3): 147-161, doi: 10.1016/S0304-3894(01)00197-2.

     

    Yu X J. 2007. Research on application of electrical resistivity model theory to creep behaviors of marine soft soil. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 26(8): 1720-1727.

     

    Yu X J, Liu S Y. 2003. Research on application of electrical resistivity method to cement deep mixing pile engineering. Rock and Soil (in Chinese), 24(4): 592-597.

     

    Yu X J, Liu S Y. 2004. Researches on application of electrical resistivity indices to the microstructure of expansive soils. Chinese Journal of Geotechnical Engineering (in Chinese), 26(3): 393-396.

     

    Zha F S, Liu S Y, Du Y J. 2006. Study on the electrical resistivity characterization of unsaturated clay. Geotechnical Investigation & Surveying (in Chinese), (7): 1-4, 42.

     

    Zha F S, Liu S Y, Du Y J, et al. 2007. The electrical resistivity characteristics of unsaturated clayey soil. Rock and Soil Mechanics (in Chinese), 28(8): 1671-1676.

     

    Zha F S, Liu S Y, Du Y J, et al. 2009. Evaluation of physicochemical process in stabilized expansive soils using electrical resistivity method. Rock and Soil Mechanics (in Chinese), 30(6): 1711-1718, doi: 10.16285/j.rsm.2009.06.029.

     

    Zha F S, Liu S Y, Du Y J, et al. 2010. Quantitative assessment on change in microstructure of loess during collapsing using electrical resistivity measurement. Rock & Soil Mechanics (in Chinese), 31(6): 1692-1698, doi: 10.16285/j.rsm.2010.06.033.

     

    Zha F S, Liu S Y, Du Y J, et al. 2011. Characteristics of electrical resistivity of compacted loess. Rock and Soil Mechanics (in Chinese), 32(S2): 155-158, 165, doi: 10.16285/j.rsm.2011.s2.018.

     

    Zha F S, Liu J J, Xu L, et al. 2019. Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash. Rock and Soil Mechanics (in Chinese), 40(12): 4573-4580, 4606, doi: 10.16285/j.rsm.2018.1099.

     

    Zhang D W, Chen L, Liu S Y. 2012. Key parameters controlling electrical resistivity and strength of cement treated soils. Journal of Central South University, 19(10): 2991-2998, doi: 10.1007/s11771-012-1368-8.

     

    Zhang D W, Cao Z G, Liu S Y, et al. 2015. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils. Chinese Journal of Geotechnical Engineering (in Chinese), 37(9): 1685-1691, doi: 10.11779/CJGE201509017.

     

    Zhou W, Liu Y Z, Su N M, et al. 2014. Study on the electrical resistivity parameters of remolded loess during consolidation. China Sciencepaper (in Chinese), 9(5): 594-599.

     

    Zhu C H, Li N. 2013. Mesoscopic deformation mechanism of loess high-fill foundation based on soil electrical resistivity. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 32(3): 640-648.

     

    白兰, 周仲华, 张虎元, 等. 2008. 污染土的电阻率特征分析. 环境工程, 26(2): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC200802022.htm

     

    陈议城, 黄翔, 陈学军, 等. 2020a. 干湿循环作用下红黏土无侧限抗压强度与电阻率关系研究. 广西大学学报(自然科学版), 45(6): 1267-1275, doi: 10.13624/j.cnki.issn.1001-7445.2020.1267.

     

    陈议城, 宋宇, 陈学军, 等. 2020b. Cu2+污染红黏土电阻率特征试验研究. 岩土力学, 41(S2): 1-10, doi: 10.16285/j.rsm.2020.0137.

     

    储亚, 查甫生, 刘松玉, 等. 2017. 基于电阻率法的膨胀土膨胀性评价研究. 岩土力学, 38(1): 157-164, doi: 10.16285/j.rsm.2017.01.020.

     

    董晓强, 白晓红, 赵永强, 等. 2007. NaOH污染下水泥土的电阻率变化研究. 岩土工程学报, 29(11): 1715-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200711020.htm

     

    董晓强, 黄凤凤, 苏楠楠, 等. 2015a. 非饱和黄土受压过程中交流电阻率特性试验研究. 岩石力学与工程学报, 34(1): 189-197, doi: 10.13722/j.cnki.jrme.2015.01.021.

     

    董晓强, 宋志伟, 张少华, 等. 2016. 水泥土搅拌桩芯样电阻率特性的应用研究. 土木工程学报, 49(10): 88-94, doi: 10.15951/j.tmgcxb.2016.10.013.

     

    董晓强, 张少华, 苏楠楠, 等. 2015b. 污染土对水泥土强度和电阻率影响的试验研究. 土木工程学报, 48(4): 91-98, doi: 10.15951/j.tmgcxb.2015.04.014.

     

    付伟. 2009. 单轴压缩与冻融作用下粉质黏土电阻率特性试验研究[博士论文]. 武汉: 中国科学院武汉岩土力学研究所.

     

    付伟, 汪稔, 胡明鉴, 等. 2009. 不同温度下冻土单轴抗压强度与电阻率关系研究. 岩土力学, 30(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901018.htm

     

    龚晓南, 焦丹, 李瑛. 2011. 黏性土的电阻计算模型. 沈阳工业大学学报, 33(2): 213-218.

     

    郭秀军, 吴水娟, 马媛媛. 2012. 生活垃圾渗滤液污染砂土电阻率法量化检测研究. 岩土工程学报, 34(11): 2066-2071. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201211016.htm

     

    韩立华, 刘松玉, 杜延军. 2007. 温度对污染土电阻率影响的试验研究. 岩土力学, 28(6): 1151-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200706015.htm

     

    贺瑞, 陈家祺, 孟昊, 等. 2019. 密实度与饱和度对砂土电阻率的影响规律研究. //中国海洋工程学会. 第十九届中国海洋(岸)工程学术讨论会论文集(下). 重庆.

     

    黄凤凤, 周伟, 刘彦忠, 等. 2015. 水玻璃固化黄土过程中电阻率参数的试验研究. 广西大学学报(自然科学版), 40(1): 213-219, doi: 10.13624/j.cnki.issn.1001-7445.2015.0213.

     

    蒋吉方, 余闯, 廖饶平, 等. 2018. Cu2+对温州软黏土电阻率特性影响的试验研究. 土木建筑与环境工程, 40(6): 85-90, doi: 10.11835/j.issn.1674-4764.2018.06.012.

     

    李方. 2010. 石灰土的电阻率计算模型初探. 西部探矿工程, 22(12): 20-21, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201012009.htm

     

    李玲, 周仲华, 张虎元. 2012. 盐渍土电阻率试验研究. 环境工程, 30(S2): 498-503, doi: 10.13205/j.hjgc.2012.s2.026.

     

    李飚, 刘生财, 曹益明, 等. 2018. 基于不同测试方法的宁波海相软土电阻率测试研究. 科技通报, 34(9): 99-103, doi: 10.13774/j.cnki.kjtb.2018.09.020.

     

    廖宜顺, 魏小胜, 左义兵. 2014. 粉煤灰掺量对水泥浆体电阻率与自收缩的影响. 建筑材料学报, 17(3): 517-520, doi: 10.3969/j.issn.1007-9629.2014.03.026.

     

    刘国华, 王振宇, 黄建平. 2004. 土的电阻率特性及其工程应用研究. 岩土工程学报, 26(1): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401016.htm

     

    刘松玉, 查甫生, 于小军. 2006. 土的电阻率室内测试技术研究. 工程地质学报, 14(2): 216-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200602012.htm

     

    刘晓凤, 邱斌, 刘德, 等. 2014. 饱和砂的交流电阻率特性研究. 太原理工大学学报, 45(5): 653-656. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201405018.htm

     

    柳瑶. 2015. 冻土电阻率模型及其试验研究[硕士论文]. 哈尔滨: 东北林业大学.

     

    刘志彬, 张勇, 方伟, 等. 2013. 黄土电阻率与其压实特性间关系试验研究. 西安科技大学学报, 33(1): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201301018.htm

     

    罗述伟. 2019. 钠盐盐渍土的电阻率特性分析[硕士论文]. 杨凌: 西北农林科技大学.

     

    马媛媛, 郭秀军, 朱大伟, 等. 2010. 生活垃圾渗滤液污染砂土电阻率变化机制实验研究. 地球物理学进展, 25(3): 1098-1104, doi: 10.3969/j.issn.1004-2903.2010.03.051.

     

    申纪伟, 万水, 刘素英, 等. 2021. 锌污染对紫色土干缩与电阻率影响的试验研究. 岩土力学, 42(3): 656-664, doi: 10.16285/j.rsm.2020.1225.

     

    苏楠楠. 2015. 黄土固结试验过程中电阻率结构参数的变化研究[硕士论文]. 太原: 太原理工大学.

     

    苏楠楠, 周伟, 杨波, 等. 2015. 黄土固结过程中电阻率参数的变化. 中国科技论文, 10(1): 100-104, 114, doi: 10.3969/j.issn.2095-2783.2015.01.023.

     

    缪林昌, 刘松玉, 阎长虹. 2001a. 电阻率法在粉喷桩质量检测中的应用. 建筑结构, 31(8): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200108017.htm

     

    缪林昌, 刘松玉, 严明良, 等. 2000. 水泥土的电阻率特性研究. 工程勘察, (5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200005011.htm

     

    缪林昌, 刘松玉, 严明良. 2001b. 水泥土的电阻率特性及其工程应用研究. 岩石力学与工程学报, 20(1): 126-130, doi: 10.3321/j.issn:1000-6915.2001.01.028.

     

    缪林昌, 严明良, 崔颖. 2007. 重塑膨胀土的电阻率特性测试研究. 岩土工程学报, 29(9): 1413-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709023.htm

     

    孙旭, 杨庆义, 高兰, 等. 2019. 湿度变化对土壤电阻率的影响研究. 工程勘察, 47(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201901007.htm

     

    王炳辉, 王志华, 姜朋明, 等. 2017. 饱和砂土不同孔隙率的电阻率特性研究. 岩土工程学报, 39(9): 1739-1745, doi: 10.11779/CJGE201709024.

     

    王柯. 2019. 电阻率法在冻土未冻水含量测试中的理论及试验研究[硕士论文]. 西安: 西安科技大学.

     

    王乐凡, 余承华, 顾强康, 等. 2014. 不同含盐量饱和盐渍土电阻率试验. 空军工程大学学报(自然科学版), 15(4): 25-28, doi: 10.3969/j.issn.1009-3516.2014.04.007.

     

    王庭元, 郝子睿, 姚鑫, 等. 2019. 赤泥改良石灰土的应力-应变-电阻率研究. 硅酸盐通报, 38(5): 1591-1596, 1603, doi: 10.16552/j.cnki.issn1001-1625.2019.05.048.

     

    吴道祥, 熊福才, 郭静芳, 等. 2016. 不同含水率膨胀土的无侧限抗压强度-电阻率试验研究. 合肥工业大学学报(自然科学版), 39(12): 1688-1692, doi: 10.3969/j.issn.1003-5060.2016.12.019.

     

    吴水娟. 2012. 城市生活垃圾渗滤液污染砂土电阻率模型的构建及应用[硕士论文]. 青岛: 中国海洋大学.

     

    小海. 2020. 不同饱和度砂土电阻率特性试验研究[硕士论文]. 徐州: 中国矿业大学.

     

    于小军. 2007. 电阻率模型理论应用于海相软土蠕变研究. 岩石力学与工程学报, 26(8): 1720-1727. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200708030.htm

     

    于小军, 刘松玉. 2003. 电阻率测试技术在水泥土深层搅拌法工程中的应用研究. 岩土力学, 24(4): 592-597. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200304026.htm

     

    于小军, 刘松玉. 2004. 电阻率指标在膨胀土结构研究中的应用探讨. 岩土工程学报, 26(3): 393-396, https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200403021.htm

     

    查甫生, 刘松玉, 杜延军. 2006. 非饱和黏性土电阻率结构模型研究. 工程勘察, (7): 1-4, 42.

     

    查甫生, 刘松玉, 杜延军, 等. 2007. 非饱和黏性土的电阻率特性及其试验研究. 岩土力学, 28(8): 1671-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200708025.htm

     

    查甫生, 刘松玉, 杜延军, 等. 2009. 电阻率法评价膨胀土改良的物化过程. 岩土力学, 30(6): 1711-1718, doi: 10.16285/j.rsm.2009.06.029.

     

    查甫生, 刘松玉, 杜延军, 等. 2010. 黄土湿陷过程中微结构变化规律的电阻率法定量分析. 岩土力学, 31(6): 1692-1698, doi: 10.16285/j.rsm.2010.06.033.

     

    查甫生, 刘松玉, 杜延军, 等. 2011. 击实黄土的电阻率特性试验研究. 岩土力学, 32(S2): 155-158, 165, doi: 10.16285/j.rsm.2011.s2.018.

     

    查甫生, 刘晶晶, 许龙, 等. 2019. 水泥-粉煤灰固化/稳定重金属污染土的电阻率特性试验研究. 岩土力学, 40(12): 4573-4580, 4606, doi: 10.16285/j.rsm.2018.1099.

     

    章定文, 曹智国, 刘松玉, 等. 2015. 水泥固化铅污染土的电阻率特性与经验公式. 岩土工程学报, 37(9): 1685-1691, doi: 10.11779/CJGE201509017.

     

    周伟, 刘彦忠, 苏楠楠, 等. 2014. 重塑黄土固结过程中电阻率参数变化研究. 中国科技论文, 9(5): 594-599. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201405022.htm

     

    朱才辉, 李宁. 2013. 基于土电阻率的黄土高填方地基细观变形机制. 岩石力学与工程学报, 32(3): 640-648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303023.htm

  • 加载中

(7)

(8)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-01-05
修回日期:  2022-05-25
刊出日期:  2022-10-20

目录