海域天然地震资料采集方法综述

臧虎临, 侯贺晟, 安美建, 冯梅. 2022. 海域天然地震资料采集方法综述. 地球物理学进展, 37(5): 2218-2224. doi: 10.6038/pg2022FF0572
引用本文: 臧虎临, 侯贺晟, 安美建, 冯梅. 2022. 海域天然地震资料采集方法综述. 地球物理学进展, 37(5): 2218-2224. doi: 10.6038/pg2022FF0572
ZANG HuLin, HOU HeSheng, AN MeiJian, FENG Mei. 2022. Seismological data acquisition methods in marine area. Progress in Geophysics, 37(5): 2218-2224. doi: 10.6038/pg2022FF0572
Citation: ZANG HuLin, HOU HeSheng, AN MeiJian, FENG Mei. 2022. Seismological data acquisition methods in marine area. Progress in Geophysics, 37(5): 2218-2224. doi: 10.6038/pg2022FF0572

海域天然地震资料采集方法综述

  • 基金项目:

    中国地质局地质调查项目(DD20190010)、国家自然科学基金项目(41974051, 42174068)和中国地质科学院基本科研业务费(YWF201904)联合资助

详细信息
    作者简介:

    臧虎临, 男, 1998年生, 硕士研究生, 主要从事地震各向异性及地球动力学研究.E-mail: hulinzang2020@outlook.com

    通讯作者: 冯梅, 女, 1977年生, 研究员, 主要从事地震活动构造和岩石圈构造物理研究.E-mail: mei_feng_cn@163.com
  • 中图分类号: P631;P738

Seismological data acquisition methods in marine area

More Information
  • 天然地震探测是提取地球深部结构信息的最有效手段之一.而海域约占地表总面积的70%, 所以对海域开展地震探测十分重要.但海域有水体覆盖,海底地貌条件复杂,导致海域天然地震资料采集难度非常大,探测程度远低于陆域.针对海域地震采集环境的特殊性,人们先后发展了不同类别的海域天然地震资料采集技术.本文对埋入式、沉底式和漂浮式等传统的和新兴的非常规海域天然地震采集方法、仪器技术参数及其所采集的地震信号质量进行了介绍.然后总结了不同采集方法的优缺点.总体来看,埋入式永久海底地震台网建设成本高,不适宜大规模部署;沉底式海底地震仪(OBS)投放成本低、效率高,适合于密集台阵部署;漂浮式海域潜标地震仪(MERMAID)可以在深海区域采集强震P波信号,对全海域三维成像探测具有独特优势;新兴的海底光缆地震仪对应变敏感,适宜于海啸预警.以上信息有助于推动天然地震探测技术在海域更广泛的应用.

  • 加载中
  • 图 1 

    海底钻孔埋入式地震采集系统示意图

    Figure 1. 

    Schematic diagram of ocean bottom borehole buried seismic acquisition system(modified from Stephen et al., 2003)

    图 2 

    沉底式OBS地震采集系统示意图

    Figure 2. 

    Schematic diagram of bottom sinking OBS seismic acquisition system(modified from Nedimović, 2019)

    图 3 

    漂浮式海域潜标地震仪(MERMAID) 运行图(Hello et al., 2011)

    Figure 3. 

    Operation diagram of floating marine mobile seismograph (MERMAID) (Hello et al., 2011)

    图 4 

    海底光纤地震仪采集原理示意图

    Figure 4. 

    Schematic diagram of acquisition principle of submarine optical fiber seismograph(modified from Marra et al., 2018)

    图 5 

    钻孔深埋永久地震台站与海底OBS地震台站波形对比(波形修改自Stephen et al., 2003)

    Figure 5. 

    Comparison of waveforms between deep borehole permanent seismic station and submarine OBS seismic station(waveforms are modified from Stephen et al., 2003)

    图 6 

    海底OBS地震台与MERMAID记录的波形对比

    Figure 6. 

    Comparison of waveforms recorded by submarine OBS seismic station and MERMAID

    图 7 

    海底光纤地震仪与两端陆基地震仪记录的同一个地震的南北分量波形对比(Marra et al., 2018)

    Figure 7. 

    Comparison of the north-south component waveforms of the same earthquake recorded by the submarine optical fiber seismograph and the land-based seismographs at its both ends (Marra et al., 2018)

    表 1 

    陆域海域宽频地震仪主要技术参数

    Table 1. 

    Main technical parameters of land and marine broadband seismographs

    采集方式/代表性地震台站 频带范围 动态范围/dB 灵敏度 置放深度
    陆基/陆地地震台 0.0028~100 Hz >167 1, 500 V/ms-1 陆域浅埋
    埋入式/永久地震台 0.003~5 Hz (KS-54000) >143 2, 400 V/ms-1 < 100 m (井下)
    沉底式/海底地震仪OBS 0.008~100 Hz >142 -162 dB re: 1 V/μPa < 6000 m (水下)
    漂浮式/潜标地震仪MERMAID 0.1 Hz~50 kHz (OSEAN) - -198 dB re: 1 V/μPa < 3000 m (水下)
    非常规/海底光纤地震仪 3~800 Hz < 94 39 dB re: rad/g 不限
    注: 陆地地震仪数据主要根据https://www.guralp.com/products/surface中列举的主流摆式地震仪参数综合得出;埋入式永久地震台数据来自http://www.geoinstr.com/ks54000c.htm;OBS数据来自https://www.guralp.com/products/ocean-bottom-seismometershttps://www.passcal.nmt.edu/content/instrumentation/sensors/broadband-sensors;潜标地震仪数据来自http://www.osean.fr/pdf/osean_oceanographic_profiler_V1.pdf丁巍伟等(2019);光纤地震仪数据参考自陈瑛和宋俊磊(2013)Marra等(2018).
    下载: 导出CSV

    表 2 

    不同海域天然地震采集方法主要指标对比

    Table 2. 

    Comparison of main indicators of different marine seismological data acquisition methods

    采集方式/代表性地震台站 适用海域 布设方式 布设成本 信噪比 运行时间 震相 探测维度
    埋入式/永久地震台 浅海 散点 不限 完整 1D, 3D
    沉底式/海底地震仪OBS 浅海 阵列 适中 完整 2D, 3D
    漂浮式/潜标地震仪MERMAID 深海+浅海 散点 较低 较低 不限 强震P波 3D
    非常规/海底光纤地震仪 深海+浅海 极低 良好 不限 应变(率) 1D
    下载: 导出CSV
  •  

    Chen Y, Song J L. 2013. Review of the development history and present situation on seismographs. Progress in Geoghysics (in Chinese), 28(3): 1311-1319, doi: 10.6038/pg20130324.

     

    Çınar H, Alkan H. 2016. Crustal S-wave structure beneath Eastern Black Sea Region revealed by Rayleigh-wave group velocities. J. Asian Earth Sci., 115: 273-284. doi: 10.1016/j.jseaes.2015.10.014

     

    Ding W W, Huang H C, Zhu X K, et al. 2019. New mobile oceanic seismic recording system and its application in marine seismic exploration. Progress in Geoghysics (in Chinese), 34(1): 292-296, doi: 10.6038/pg2019BB0549.

     

    Feng M, An M J. 2020. Method on 3D tomography of S-wave velocity azimuthal anisotropy by using surface-wave dispersion curves. CT Theory and Applications (in Chinese), 29(4): 381-397.

     

    Hello Y, Ogé A, Sukhovich A, et al. 2011. Modern mermaids: New floats image the deep Earth. Eos, Trans. AGU, 92(40): 337-338.

     

    Hosny A, Nyblade A. 2016. The crustal structure of Egypt and the northern Red Sea region. Tectonophysics, 687: 257-267. doi: 10.1016/j.tecto.2016.06.003

     

    Jia M, Wang X G, Li S L, et al. 2015. Crustal structures of Ordos block and surrounding regions from receiver functions. Progress in Geophysics (in Chinese), 30(6): 2474-2481, doi: 10.6038/pg20150605.

     

    Kohler M D, Hafner K, Park J, et al. 2020. A plan for a long-term, automated, broadband seismic monitoring network on the global seafloor. Seismol. Res. Lett., 91(3): 1343-1355. doi: 10.1785/0220190123

     

    Li F, Jiang Y S, Zhang X G. 2008. Novel geophone based on long period fiber grating. Journal of Applied Optics (in Chinese), 29(1): 101-104, 109. doi: 10.3969/j.issn.1002-2082.2008.01.024

     

    Li Z W, Xu Y, Hao T Y, et al. 2006. Seismic tomography and velocity structure in the crust and upper mantle around Bohai Sea area. Chinese J. Geophys. (in Chinese), 49(3): 797-804.

     

    Liu C G, Hua Q F, Pei Y L, et al. 2014. Passive-source ocean bottom seismograph (OBS) array experiment in South China Sea and data quality analyses. Chinese Sci. Bull., 59(33): 4524-4535. doi: 10.1007/s11434-014-0369-4

     

    Maggi A, Debayle E, Priestley K, et al. 2006. Azimuthal anisotropy of the Pacific region. Earth Planet. Sci. Lett., 250(1-2): 53-71. doi: 10.1016/j.epsl.2006.07.010

     

    Marra G, Clivati C, Luckett R, et al. 2018. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, 361(6401): 486-490. doi: 10.1126/science.aat4458

     

    Nakahigashi K, Shinohara M, Yamada T, et al. 2013. Seismic structure of the extended continental crust in the Yamato Basin, Japan Sea, from ocean bottom seismometer survey. J. Asian Earth Sci., 67-68: 199-206. doi: 10.1016/j.jseaes.2013.02.028

     

    Nedimović M R. 2019. Ocean bottom seismometer instrumentation in Canada. Recorder, 44(2): 12-17.

     

    Romanowicz B, Stakes D, Montagner J P, et al. 1998. MOISE: A pilot experiment towards long term sea-floor geophysical observatories. Earth, Plants and Space, 50(11): 927-937.

     

    Shinohara M, Araki E, Kanazawa T, et al. 2006. Deep-sea borehole seismological observatories in the western Pacific: temporal variation of seismic noise level and event detection. Ann. Geophys., 49(2-3): 625-641.

     

    Sladen A, Rivet D, Ampuero J P, et al. 2019. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nature Communications, 10(1): 5777, doi: 10.1038/s41467-019-13793-z.

     

    Stephen R A, Spiess F N, Collins J A, et al. 2003. Ocean seismic network pilot experiment. Geochem. Geophys. Geosyst., 4(10): 1092, doi: 10.1029/2002GC000485.

     

    Sukhovich A, Bonnieux S, Hello Y, et al. 2015. Seismic monitoring in the oceans by autonomous floats. Nature Communications, 6(1): 8027, doi: 10.1038/ncomms9027.

     

    Wang X, Williams E F, Karrenbach M, et al. 2020. Rose parade seismology: Signatures of floats and bands on optical fiber. Seismol. Res. Lett., 91(4): 2395-2398. doi: 10.1785/0220200091

     

    Wessel P, Smith W H F. 1991. Free software helps map and display data. Eos, Trans. AGU, 72(41): 441.

     

    Xia K Y. 1992. Marine tectonogeophysics, retrospect, prospect and our orientation. Advance in Earth Sciences (in Chinese), 7(2): 1-4.

     

    Zhan Z W. 2020. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas. Seismol. Res. Lett., 91(1): 1-15. doi: 10.1785/0220190112

     

    Zhao F F, Zhang M H, Xu T. 2014. A review of body wave traveltime tomography methods. Progress in Geophysics (in Chinese), 29(3): 1090-1101, doi: 10.6038/pg20140312.

     

    陈瑛, 宋俊磊. 2013. 地震仪的发展历史及现状综述. 地球物理学进展, 28(3): 1311-1319, doi: 10.6038/pg20130324. http://www.progeophys.cn/article/doi/10.6038/pg20130324

     

    丁巍伟, 黄豪彩, 朱心科, 等. 2019. 一种新型潜标式海洋地震仪及在海洋地震探测中的应用. 地球物理学进展, 34(1): 292-296, doi: 10.6038/pg2019BB0549. http://www.progeophys.cn/article/doi/10.6038/pg2019BB0549

     

    冯梅, 安美建. 2020. 基于面波频散的三维横波速度方位各向异性层析成像方法. CT理论与应用研究, 29(4): 381-397.

     

    贾萌, 王显光, 李世林, 等. 2015. 鄂尔多斯块体及周边区域地壳结构的接收函数研究. 地球物理学进展, 30(6): 2474-2481, doi: 10.6038/pg20150605. http://www.progeophys.cn/article/doi/10.6038/pg20150605

     

    黎芳, 江月松, 张绪国. 2008. 基于长周期光纤光栅的新型地震检波器. 应用光学, 29(1): 101-104, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200801022.htm

     

    李志伟, 胥颐, 郝天珧, 等. 2006. 环渤海地区的地震层析成像与地壳上地幔结构. 地球物理学报, 49(3): 797-804. doi: 10.3321/j.issn:0001-5733.2006.03.023

     

    夏戡原. 1992. 海洋构造地球物理当前动态、前景及我们的发展方向. 地球科学进展, 7(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199202001.htm

     

    赵烽帆, 张明辉, 徐涛. 2014. 地震体波走时层析成像方法研究综述. 地球物理学进展, 29(3): 1090-1101, doi: 10.6038/pg20140312. http://www.progeophys.cn/article/doi/10.6038/pg20140312

  • 加载中

(7)

(2)

计量
  • 文章访问数:  1899
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2022-01-28
修回日期:  2022-06-28
刊出日期:  2022-10-20

目录